32 research outputs found

    Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea

    Get PDF
    Abstract A total of 18 organosulfur compounds originating from Petiveria alliacea L. roots have been tested for their antibacterial and antifungal activities. These represent compounds occurring in fresh homogenates as well as those present in various macerates, extracts and other preparations made from Petiveria alliacea. Of the compounds assayed, the thiosulfinates, trisulfides and benzylsulfinic acid were observed to be the most active, with the benzyl-containing thiosulfinates exhibiting the broadest spectrum of antimicrobial activity. The effect of plant sample preparation conditions on the antimicrobial activity of the extract is discussed

    The amino acid precursors and odor formation in society garlic (Tulbaghia violacea Harv).

    Get PDF
    Abstract Identification and isolation of (R S R C )-S-(methylthiomethyl)cysteine-4-oxide from rhizomes of Tulbaghia violacea Harv. is reported. The structure and absolute configuration of the amino acid have been determined by NMR, MALDI-HRMS, IR, and CD spectroscopy. Its content varied in different parts of the plant (rhizomes, leaves, and stems) between 0.12 and 0.24 mg g À1 fr. wt, being almost equal in the stems and rhizomes. In addition, S-methyl-and S-ethylcysteine derivatives have been detected in minute amounts (< 3 mg g À1 fr. wt) in all parts of the plant. The enzymatic cleavage of the amino acid and subsequent odor formation are discussed. 2,4,5,7-Tetrathiaoctane-4-oxide, the primary breakdown product, has been detected and isolated for the first time.

    Inhibition of Biofilm Formation, Quorum Sensing and Infection in Pseudomonas aeruginosa by Natural Products-Inspired Organosulfur Compounds

    Get PDF
    Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO) (1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed

    Cysteine sulfoxide derivatives in Petiveria alliacea

    No full text
    Abstract Two diastereomers of S-benzyl-l-cysteine sulfoxide have been isolated from fresh roots of Petiveria alliacea. Their structures and absolute configurations have been determined by NMR, MALDI-HRMS, IR and CD spectroscopy and confirmed by comparison with authentic compounds. Both the R S and S S diastereomers of the sulfoxide are present in all parts of the plant (root, stem, and leaves) with the latter diastereomer being predominant. Their total content greatly varied in different parts of the plant between 0.07 and 2.97 mg g À1 fr. wt, being by far the highest in the root. S-Benzylcysteine has also been detected in trace amounts (< 10 mg g À1 fr. wt) in all parts of the plant. This represents the first report of the presence of S-benzylcysteine derivatives in nature.

    Rapid High-throughput Species Identification of Botanical Material Using Direct Analysis in Real Time High Resolution Mass Spectrometry

    Get PDF
    We demonstrate that direct analysis in real time-high resolution mass spectrometry can be used to produce mass spectral profiles of botanical material, and that these chemical fingerprints can be used for plant species identification. The mass spectral data can be acquired rapidly and in a high throughput manner without the need for sample extraction, derivatization or pH adjustment steps. The use of this technique bypasses challenges presented by more conventional techniques including lengthy chromatography analysis times and resource intensive methods. The high throughput capabilities of the direct analysis in real time-high resolution mass spectrometry protocol, coupled with multivariate statistical analysis processing of the data, provide not only class characterization of plants, but also yield species and varietal information. Here, the technique is demonstrated with two psychoactive plant products, Mitragyna speciosa (Kratom) and Datura (Jimsonweed), which were subjected to direct analysis in real time-high resolution mass spectrometry followed by statistical analysis processing of the mass spectral data. The application of these tools in tandem enabled the plant materials to be rapidly identified at the level of variety and species

    Introduction of Novel Substrate Oxidation into Cytochrome c

    No full text

    Discovery and Characterization of a Novel Lachrymatory Factor Synthase in Petiveria alliacea and Its Influence on Alliinase-Mediated Formation of Biologically Active Organosulfur Compounds1[W][OA]

    No full text
    A novel lachrymatory factor synthase (LFS) was isolated and purified from the roots of the Amazonian medicinal plant Petiveria alliacea. The enzyme is a heterotetrameric glycoprotein comprised of two α-subunits (68.8 kD each), one γ-subunit (22.5 kD), and one δ-subunit (11.9 kD). The two α-subunits are glycosylated and connected by a disulfide bridge. The LFS has an isoelectric point of 5.2. It catalyzes the formation of a sulfine lachrymator, (Z)-phenylmethanethial S-oxide, only in the presence of P. alliacea alliinase and its natural substrate, S-benzyl-l-cysteine sulfoxide (petiveriin). Depending on its concentration relative to that of P. alliacea alliinase, the LFS sequesters, to varying degrees, the sulfenic acid intermediate formed by alliinase-mediated breakdown of petiveriin. At LFS:alliinase of 5:1, LFS sequesters all of the sulfenic acid formed by alliinase action on petiveriin, and converts it entirely to (Z)-phenylmethanethial S-oxide. However, starting at LFS:alliinase of 5:2, the LFS is unable to sequester all of the sulfenic acid produced by the alliinase, with the result that sulfenic acid that escapes the action of the LFS condenses with loss of water to form S-benzyl phenylmethanethiosulfinate (petivericin). The results show that the LFS and alliinase function in tandem, with the alliinase furnishing the sulfenic acid substrate on which the LFS acts. The results also show that the LFS modulates the formation of biologically active thiosulfinates that are downstream of the alliinase in a manner dependent upon the relative concentrations of the LFS and the alliinase. These observations suggest that manipulation of LFS-to-alliinase ratios in plants displaying this system may provide a means by which to rationally modify organosulfur small molecule profiles to obtain desired flavor and/or odor signatures, or increase the presence of desirable biologically active small molecules
    corecore