420 research outputs found

    Geoestatística aplicada a condutividade elétrica do solo e altitude do solo cultivado com cana-de-açúcar.

    Get PDF
    A utilização de sensores para coleta de dados possibilita a redução de custos e melhor interpretação de mapas relacionados a produção das culturas, omo no caso da cana-de-açúcar,de maneira mais eficiente e com maior acurácia. O objetivo do trabalho foi verificar a variabilidade espacial da condutividade elétrica do solo e da declividade do solo cultivado com cana-de-açúcar sob sistema de plantio direto. A área localiza-se na Fazenda Aparecida em Mogi mirim, SP e possui 17 ha. Foram obtidas a condutividade elétrica (mS.m ) com o sensor por contato direto Veris, ambos de 0-30 e 0-90 cm de profundidade e a cota topográfica (m) com nível topográfico. Foram obtidos os parâmetros estatísticos descritivos e realizada a análise geoestatística através do semivariograma, interpolação dos dados por krigagem e construção de mapas de isolinhas. Os semivariogramas mostraram dependência espacial para todas as variáveis. A condutividade elétrica apresentou correlação espacial para o mesmo local da área, correlacionando também com a cota topográfica. Conclui-se que a variabilidade espacial encontrada nos resultados de condutividade elétrica correspondem as diferenças de altitude e são úteis para diagnosticar características do solo e da planta que variam conforme a topografia do terreno

    Anyons and Chiral Solitons on a Line

    Get PDF
    We show that excitations in a recently proposed gauge theory for anyons on a line in fact do not obey anomalous statistics. On the other hand, the theory supports novel chiral solitons. Also we construct a field-theoretic description of lineal anyons, but gauge fields play no role.Comment: 8 pages, revtex, no figure

    Renormalized SO(5) symmetry in ladders with next-nearest-neighbor hopping

    Full text link
    We study the occurrence of SO(5) symmetry in the low-energy sector of two-chain Hubbard-like systems by analyzing the flow of the running couplings (gg-ology) under renormalization group in the weak-interaction limit. It is shown that SO(5) is asymptotically restored for low energies for rather general parameters of the bare Hamiltonian. This holds also with inclusion of a next-nearest-neighbor hopping which explicitly breaks particle-hole symmetry provided one accounts for a different single-particle weight for the quasiparticles of the two bands of the system. The physical significance of this renormalized SO(5) symmetry is discussed.Comment: Final version: to appear in Phys. Rev. Lett., sched. Mar. 9

    Tracking spin and charge with spectroscopy in spin-polarised 1D systems

    Full text link
    We calculate the spectral function of a one-dimensional strongly interacting chain of fermions, where the response can be well understood in terms of spinon and holon excitations. Upon increasing the spin imbalance between the spin species, we observe the single-electron response of the fully polarised system to emanate from the holon peak while the spinon response vanishes. For experimental setups that probe one-dimensional properties, we propose this method as an additional generic tool to aid the identification of spectral structures, e.g. in ARPES measurements. We show that this applies even to trapped systems having cold atomic gas experiments in mind.Comment: 5 pages, 4 figure

    Interrelation of Superconducting and Antiferromagnetic Gaps in High-Tc Compounds: a Test Case for a Microscopic Theory

    Full text link
    Recent angle resolved photoemission (ARPES) data, which found evidence for a d-wave-like modulation of the antiferromagnetic gap, suggest an intimate interrelation between the antiferromagnetic insulator and the superconductor with its d-wave gap. This poses a new challenge to microscopic descriptions, which should account for this correlation between, at first sight, very different states of matter. Here, we propose a microscopic mechanism which provides a definite correlation between these two different gap structures: it is shown that a projected SO(5) theory, which aims at unifying antiferromagnetism and d-wave superconductivity via a common symmetry principle while explicitly taking the Mott-Hubbard gap into account, correctly describes the observed gap characteristics. Specifically, it accounts for both the dispersion and the order of magnitude difference between the antiferromagnetic gap modulation and the superconducting gap.Comment: 8 pages, 5 figure

    Microscopic Electron Models with Exact SO(5) Symmetry

    Full text link
    We construct a class of microscopic electron models with exact SO(5) symmetry between antiferromagnetic and d-wave superconducting ground states. There is an exact one-to-one correspondence between both single-particle and collective excitations in both phases. SO(5) symmetry breaking terms can be introduced and classified according to irreducible representations of the exact SO(5) algebra. The resulting phase diagram and collective modes are identical to that of the SO(5) nonlinear sigma model.Comment: 5 pages, LATEX, 4 eps fig

    An SU(4) Model of High-Temperature Superconductivity and Antiferromagnetism

    Full text link
    We present an SU(4) model of high-temperature superconductivity having many similarities to dynamical symmetries known to play an important role in microscopic nuclear structure physics and in elementary particle physics. Analytical solutions in three dynamical symmetry limits of this model are found: an SO(4) limit associated with antiferromagnetic order; an SU(2) X SO(3) limit that may be interpreted as a d-wave pairing condensate; and an SO(5) limit that may be interpreted as a doorway state between the antiferromagnetic order and the superconducting order. The model suggests a phase diagram in qualitative agreement with that observed in the cuprate superconductors. The relationship between the present model and the SO(5) unification of superconductivity and antiferromagnetic order proposed by Zhang is discussed.Comment: A long paper extended from the early version cond-mat/9903150; accepted by Phys. Rev.
    corecore