8 research outputs found

    Translation-Dependent Mechanisms Lead to PML Upregulation and Mediate Oncogenic K-RAS-Induced Cellular Senescence

    Get PDF
    Expression of oncogenic K-RAS in primary cells elicits oncogene-induced cellular senescence (OIS), a form of growth arrest that potently opposes tumourigenesis. This effect has been largely attributed to transcriptional mechanisms that depend on the p53 tumour suppressor protein. The PML tumour suppressor was initially identified as a component of the PMLRARαPML-RAR\alpha oncoprotein of acute promyelocytic leukaemia (APL). PML, a critical OIS mediator, is upregulated by oncogenic K-RAS in vivo and in vitro. We demonstrate here that oncogenic K-RAS induces PML protein upregulation by activating the RAS/MEK1/mTOR/eIF4E pathway even in the absence of p53. Under these circumstances, PML mRNA is selectively associated to polysomes. Importantly, we find that the PML 5′ untranslated mRNA region plays a key role in mediating PML protein upregulation and that its presence is essential for an efficient OIS response. These findings demonstrate that upregulation of PML translation plays a central role in oncogenic K-RAS-induced OIS. Thus, selective translation initiation plays a critical role in tumour suppression with important therapeutic implications for the treatment of solid tumours and APL

    The SUMO E3-ligase PIAS1 Regulates the Tumor Suppressor PML and Its Oncogenic Counterpart PML-RARA

    Full text link
    The ubiquitin-like SUMO proteins covalently modify protein substrates and regulate their functional properties. In a broad spectrum of cancers, the tumor suppressor PML undergoes ubiquitin-mediated degradation primed by CK2 phosphorylation. Here we report that the SUMO E3-ligase inhibitor PIAS1 regulates oncogenic signaling through its ability to sumoylate PML and the PML-RARA oncoprotein of acute promyelocytic leukemia (APL). PIAS1-mediated SUMOylation of PML promoted CK2 interaction and ubiquitin/proteasome-mediated degradation of PML, attenuating its tumor suppressor functions. In addition, PIAS1-mediated SUMOylation of PML-RARA was essential for induction of its degradation by arsenic trioxide, an effective APL treatment. Moreover, PIAS1 suppression abrogated the ability of arsenic trioxide to trigger apoptosis in APL cells. Lastly, PIAS1 was also essential for PML degradation in non-small cell lung cancer cells, and PML and PIAS1 were inversely correlated in NSCLC cell lines and primary specimens. Together, our findings reveal novel roles for PIAS1 and the SUMOylation machinery in regulating oncogenic networks and the response to leukemia therapy

    Nullifying the CDKN2AB

    Full text link

    Relationships between EGFR Signaling–competent and Endocytosis-competent Membrane Microdomains

    Full text link
    Membrane microdomains, the so-called lipid rafts, function as platforms to concentrate receptors and assemble the signal transduction machinery. Internalization, in most cases, is carried out by different specialized structures, the clathrin-coated pits. Here, we show that several endocytic proteins are efficiently recruited to morphologically identified plasma membrane lipid rafts, upon activation of the epidermal growth factor (EGF) receptor (EGFR), a receptor tyrosine kinase. Analysis of detergent-resistant membrane fractions revealed that the EGF-dependent association of endocytic proteins with rafts is as efficient as that of signaling effector molecules, such as Grb2 or Shc. Finally, the EGFR, but not the nonsignaling transferrin receptor, could be localized in nascent coated pits that almost invariably contained raft membranes. Thus, specialized membrane microdomains have the ability to assemble both the molecular machineries necessary for intracellular propagation of EGFR effector signals and for receptor internalization

    PIAS1 Promotes Lymphomagenesis through MYC Upregulation

    Get PDF
    The MYC proto-oncogene is a transcription factor implicated in a broad range of cancers. MYC is regulated by several post-translational modifications including SUMOylation, but the functional impact of this post-translational modification is still unclear. Here, we report that the SUMO E3 ligase PIAS1 SUMOylates MYC. We demonstrate that PIAS1 promotes, in a SUMOylation-dependent manner, MYC phosphorylation at serine 62 and dephosphorylation at threonine 58. These events reduce the MYC turnover, leading to increased transcriptional activity. Furthermore, we find that MYC is SUMOylated in primary B cell lymphomas and that PIAS1 is required for the viability of MYC-dependent B cell lymphoma cells as well as several cancer cell lines of epithelial origin. Finally, Pias1-null mice display endothelial defects reminiscent of Myc-null mice. Taken together, these results indicate that PIAS1 is a positive regulator of MYC

    Córdoba, 28 y 29 de junio de 2018

    Full text link
    Actas del X Seminario Internacional de Investigación en UrbanismoEl seminario tiene como objetivo facilitar una instancia de reflexión compartida sobre las investigaciones en el campo del urbanismo y generar un intercambio entre investigadores sobre los fenómenos de la urbanización y la transformación urbana y territorial en distintos países iberoamericanos. Se propone analizar las características de los procesos de transformación del territorio y los factores que los explican, en relación con las estrategias de planificación, proyecto y renovación sostenible destinadas a ciudades y regiones. Se pretende integrar diferentes escalas y perspectivas de análisis, propias del planeamiento y la gestión urbana, metropolitana y regional, del diseño urbano y arquitectónico; de la geografía y la sociología urbanas, que habitualmente se examinan aisladamente en distintos foros. En el marco de este encuentro, y en conmemoración del primer centenario de la Reforma Universitaria iniciada en Córdoba –movimiento estudiantil que sienta las bases del actual sistema universitario nacional-se cree propicia la ocasión para reflexionar además sobre la relación entre ciudad y universidad, sobre ciudades universitarias, sobre la contribución desde la Universidad Nacional de Córdoba y del resto de las universidades latinoamericanas al urbanismo de nuestras ciudades
    corecore