29 research outputs found

    Observation of isotropic giant magnetoresistance in paramagnetic Au80 Fe20

    Get PDF
    Magnetization and magnetoresistance were measured at room temperature and above on Au80Fe20 platelets and ribbons obtained by solid-state quenching and melt spinning. The as-quenched samples contain a solid solution of Fe in Au and exhibit a paramagnetic (Curie-Weiss) behavior in the considered temperature range; magnetic data indicate very short-ranged magnetic correlation among adjacent spins, enhanced by local composition fluctuations. The solid solution is very stable. Only a very limited fraction (never exceeding 1%) of nanometer-sized, bcc Fe particles appears after long-time isothermal anneals at suitable temperatures. A negative magnetoresistance was observed at room temperature in all examined samples. The observed effect is anhysteretic, isotropic, and quadratically dependent on magnetic field H and magnetization M. The signal scales with M rather than with H, indicating that it depends on the field-induced magnetic order of the Fe moments, as it does for conventional giant magnetoresistance in granular magnetic systems. This effect derives from spin-dependent scattering of conduction electrons from single Fe spins or very small Fe clusters. The scattering centers are almost uncorrelated at a distance of the order of the electronic mean free path (of the order of 1.5 nm, or a few atomic spacings, at RT

    Dipolar interactions and anisotropic magnetoresistance in metallic granular systems

    Full text link
    We revisit the theory of magnetoresistance for a system of nanoscopic magnetic granules in metallic matrix. Using a simple model for the spin dependent perturbation potential of the granules, we solve Boltzmann equation for the spin dependent components of the non equilibrium electronic distribution function. For typical values of the geometric parameters in granular systems, we find a peculiar structure of the distribution function of conduction electrons, which is at variance with the two-current model of conduction in inhomogeneous systems. Our treatment explicitly includes the effects of dipolar correlations yielding a magnetoresistance ratio which contains, in addition to the term proportional to the square of uniform magnetization (), a weak anisotropic contribution depending on the angle between electric and magnetic fields, and arising from the anisotropic character of dipolar interactions.Comment: 9 pages, 2 figures, accepted in PR
    corecore