49 research outputs found
Room temperature triggered single-photon source in the near infrared
We report the realization of a solid-state triggered single-photon source
with narrow emission in the near infrared at room temperature. It is based on
the photoluminescence of a single nickel-nitrogen NE8 colour centre in a
chemical vapour deposited diamond nanocrystal. Stable single-photon emission
has been observed in the photoluminescence under both continuous-wave and
pulsed excitations. The realization of this source represents a step forward in
the application of diamond-based single-photon sources to Quantum Key
Distribution (QKD) under practical operating conditions.Comment: 10 page
Monitoring Ion Channel Function In Real Time Through Quantum Decoherence
In drug discovery research there is a clear and urgent need for non-invasive
detection of cell membrane ion channel operation with wide-field capability.
Existing techniques are generally invasive, require specialized nano
structures, or are only applicable to certain ion channel species. We show that
quantum nanotechnology has enormous potential to provide a novel solution to
this problem. The nitrogen-vacancy (NV) centre in nano-diamond is currently of
great interest as a novel single atom quantum probe for nanoscale processes.
However, until now, beyond the use of diamond nanocrystals as fluorescence
markers, nothing was known about the quantum behaviour of a NV probe in the
complex room temperature extra-cellular environment. For the first time we
explore in detail the quantum dynamics of a NV probe in proximity to the ion
channel, lipid bilayer and surrounding aqueous environment. Our theoretical
results indicate that real-time detection of ion channel operation at
millisecond resolution is possible by directly monitoring the quantum
decoherence of the NV probe. With the potential to scan and scale-up to an
array-based system this conclusion may have wide ranging implications for
nanoscale biology and drug discovery.Comment: 7 pages, 6 figure
Stark shift control of single optical centers in diamond
Lifetime limited optical excitation lines of single nitrogen vacancy (NV) defect centers in diamond have been observed at liquid helium temperature. They display unprecedented spectral stability over many seconds and excitation cycles. Spectral tuning of the spin selective optical resonances was performed via the application of an external electric field (i.e. the Stark shift). A rich variety of Stark shifts were observed including linear as well as quadratic components. The ability to tune the excitation lines of single NV centers has potential applications in quantum information processing
Single photon quantum non-demolition in the presence of inhomogeneous broadening
Electromagnetically induced transparency (EIT) has been often proposed for
generating nonlinear optical effects at the single photon level; in particular,
as a means to effect a quantum non-demolition measurement of a single photon
field. Previous treatments have usually considered homogeneously broadened
samples, but realisations in any medium will have to contend with inhomogeneous
broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys.
Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an
alternative mode of operation that is preferred in an inhomogeneous
environment. We further show the implications of these results on a potential
implementation in diamond containing nitrogen-vacancy colour centres. Our
modelling shows that single mode waveguide structures of length in single-crystal diamond containing a dilute ensemble of NV
of only 200 centres are sufficient for quantum non-demolition measurements
using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv
purpose
High-sensitivity diamond magnetometer with nanoscale resolution
We present a novel approach to the detection of weak magnetic fields that
takes advantage of recently developed techniques for the coherent control of
solid-state electron spin quantum bits. Specifically, we investigate a magnetic
sensor based on Nitrogen-Vacancy centers in room-temperature diamond. We
discuss two important applications of this technique: a nanoscale magnetometer
that could potentially detect precession of single nuclear spins and an optical
magnetic field imager combining spatial resolution ranging from micrometers to
millimeters with a sensitivity approaching few femtotesla/Hz.Comment: 29 pages, 4 figure
Enhanced spontaneous emission from nanodiamond colour centres on opal photonic crystal
Colour centres in diamond are promising candidates as a platform for quantum
technologies and biomedical imaging based on spins and/or photons. Controlling
the emission properties of colour centres in diamond is a key requirement for
developing efficient single photon sources with high collection efficiency. A
number of groups have produced enhancement in the emission rate over narrow
wavelength ranges by coupling single emitters in nanodiamond crystals to
resonant electromagnetic structures. Here we characterise in detail the
spontaneous emission rates of nitrogen-vacancy centres positioned in various
locations on a structured substrate. We show an average factor of 1.5
enhancement of the total emission rate when nanodiamonds are on an opal
photonic crystal surface, and observe changes in the lifetime distribution. We
present a model to explain these observations and associate the lifetime
properties with dipole orientation and polarization effects.Comment: 16 pages, 10 figure
Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale
Fluorescent defects in non-cytotoxic diamond nanoparticles are candidates for
qubits in quantum computing, optical labels in biomedical imaging and sensors
in magnetometry. For each application these defects need to be optically and
thermodynamically stable, and included in individual particles at suitable
concentrations (singly or in large numbers). In this letter, we combine
simulations, theory and experiment to provide the first comprehensive and
generic prediction of the size, temperature and nitrogen-concentration
dependent stability of optically active NV defects in nanodiamonds.Comment: Published in Nano Letters August 2009 24 pages, 6 figure
Nonclassical photon statistics in a single nickel-nitrogen diamond color center photoluminescence at room temperature
The photoluminescence of a single nickel–nitrogen NE8 color center in a diamond nanocrystal is investigated at room temperature under pulsed excitation by scanning confocal optical microscopy. Photon arrival times are analyzed in terms of the temporal intensity correlation function. Antibunching at short times and bunching behavior for longer times is observed, associated with sub- and super-Poissonian statistics, respectively. The behavior is interpreted by a 'on–off' state model, and transition rates between these two states are inferred from intensity correlation measurements realized at different excitation powers. NE8 color center photoluminescence quantum yield is evaluated to be 65%, a value higher than achieved for a nitrogen-vacancy color center, which is, up to now, the most practical single emitter to build a reliable single-photon source at room temperature. An errata for this article was included in Journal of modern optics, (2009), Vol. 56, Nos.2-3, p. 443, http://doi.org/10.1080/095003409028207909 page(s
Triggered single-photon source based on photoluminescence of single nickel-related colour centres in CVD-grown nanodiamonds
We report the realization of a solid-state single-photon source in the near infrared regime at room temperature. It is based on the photoluminescence of a single nickel-related colour centre in a CVD grown diamond nanocrystal. Antibunching has been observed in the fluorescence light, with which we demonstrate a triggered single-photon source at room temperature.3 page(s