2 research outputs found

    Preliminary Valuation of “Y” and “V”-Trellised Canopies for Mechanical Harvesting of Plums, Sweet Cherries and Sour Cherries for the Fresh Market

    No full text
    Plums, sweet cherry, and sour cherry trees were spaced 4.5 m × 1.5 m to be trained to “Y” and “V”-trellising systems for mechanical harvesting, with a canopy contact harvester, attending to obtain fruits meeting the requirements of the fresh fruit market. The applied trellising systems were compared with the standard central leader system at the same spacing. The most of trellised trees grew less vigorously than the standard trees, and after 3 years of training, the trees were suitable for mechanical harvesting with the harvester designed at the Research Institute of Horticulture in Skierniewice. The trellised trees were able to set as many fruitlets as those grown in the form of central leader and gave a comparable yield, but differences between cultivars were significant. Light interception in the third year after planting was lower for trees of sour cherry and plum growing in the “Y”-20° and “V” in comparison to the trees with central leader. Illumination of trellised canopies at the level of 0.7 and 1.5 m was the most favorable in “V” system when compared to control and “Y” training systems. Cost of construction for the trellising systems of stone fruits calculated per 1 ha was two times higher when compared with the standard system

    Suitability Of Plum And Prune Cultivars, Grown In A High Density Planting System, For Mechanical Harvesting With A Canopy Contact, Straddle Harvester

    No full text
    The relation of hand-harvesting cost in plum and prune production to the total costs amounts to 25-40%. Mechanical harvesting makes it possible to cut drastically both the harvesting and total costs. To test the suitability of plum and prune species to be mechanically harvested, an experimental grove (area 0.8 ha) was established in 2008. Three plum cultivars and one prune cultivar grafted on semi-dwarf and vigorous rootstocks were planted at high density (1250; 1666; 2500 trees·ha−1). During the span of full yielding (2012-2014), fruits were harvested mechanically with a canopy contact, straddle harvester in continuous motion, designed at the Institute of Horticulture in Skierniewice, to harvest tart cherry, and later adapted to harvesting plums and prunes. Trees grafted on semi-dwarf rootstock (‘Wangenheim Prune’) appeared to be more suitable for mechanical harvesting than strong-growing trees grafted on Prunus cerasifera clone ‘Myrobalan’. Cumulative yield per ha (years 2012-2014) was the highest at the highest planting density. Trees grafted on the semi-dwarf rootstock had a higher productivity index than trees grafted on the vigorous rootstock. There was no significant difference in fruit quality related to planting distance. Mechanical harvesting was nearly 40 times more efficient than hand picking. The efficiency of mechanical harvest was from 85% to 90%. Over 5% of fruits were lost on the ground and from 1 to 5% of fruits were left on the tree. Up to 18% of the plums and no more than 10% of the prunes harvested mechanically showed some damage. They can be fully acceptable for processing, for up to 10 days, providing the potential deterioration processes are inhibited by cold storage. The large-fruited cultivars seem to be more susceptible to bruising than the small-fruited ones. For the latter, the share of marketable quality fruits within the mechanically harvested crop amounted to about 80%, which could be a good prognostic justifying further trials on the prune harvester
    corecore