21 research outputs found

    Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis

    Get PDF
    Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration1,2. This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted ETS variant transcription factor 2 (ETV2)3 in mature human endothelial cells cultured in a serum-free three-dimensional matrix composed of a mixture of laminin, entactin and type-IV collagen (LEC matrix) ‘resets’ these endothelial cells to adaptable, vasculogenic cells, which form perfusable and plastic vascular plexi. Through chromatin remodelling, ETV2 induces tubulogenic pathways, including the activation of RAP1, which promotes the formation of durable lumens4,5. In three-dimensional matrices—which do not have the constraints of bioprinted scaffolds—the ‘reset’ vascular endothelial cells (R-VECs) self-assemble into stable, multilayered and branching vascular networks within scalable microfluidic chambers, which are capable of transporting human blood. In vivo, R-VECs implanted subcutaneously in mice self-organize into durable pericyte-coated vessels that functionally anastomose to the host circulation and exhibit long-lasting patterning, with no evidence of malformations or angiomas. R-VECs directly interact with cells within three-dimensional co-cultured organoids, removing the need for the restrictive synthetic semipermeable membranes that are required for organ-on-chip systems, therefore providing a physiological platform for vascularization, which we call ‘Organ-On-VascularNet’. R-VECs enable perfusion of glucose-responsive insulin-secreting human pancreatic islets, vascularize decellularized rat intestines and arborize healthy or cancerous human colon organoids. Using single-cell RNA sequencing and epigenetic profiling, we demonstrate that R-VECs establish an adaptive vascular niche that differentially adjusts and conforms to organoids and tumoroids in a tissue-specific manner. Our Organ-On-VascularNet model will permit metabolic, immunological and physiochemical studies and screens to decipher the crosstalk between organotypic endothelial cells and parenchymal cells for identification of determinants of endothelial cell heterogeneity, and could lead to advances in therapeutic organ repair and tumour targeting

    Marked stem cell factor expression in the airways of lung transplant recipients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airways repair is critical to lung function following transplantation. We hypothesised that the stem cell factor (SCF) could play a role in this setting.</p> <p>Methods</p> <p>We studied 9 lung transplant recipients (LTx recipients) during their first year postgraft, and evaluated SCF mRNA expression in bronchial biopsy specimens using on-line fluorescent PCR and SCF protein levels in bronchoalveolar lavage (BAL) and serum using ELISA. The expression of SCF receptor Kit was assessed using immunostaining of paraffin-embedded bronchial sections.</p> <p>Results</p> <p>SCF mRNA was highly expressed during the early postgraft period [Month (M)1-M3] (300% increase vs controls: 356 vs 1.2 pg SCF/μg GAPDH cDNA, <it>p </it>< 0.001) and decreased thereafter (M4-M12: 187 pg/μg), although remaining at all times 10–100 times higher than in controls. While SCF protein levels in BAL were similar in LTx recipients and in controls, the SCF serum levels were at all times higher in LTx recipients than in controls (<it>p </it>< 0.05), with no relationship between these levels and the acute complications of the graft. Finally, Kit was strongly expressed by the mast cells as well as by the bronchial epithelium of LTx recipients.</p> <p>Conclusion</p> <p>SCF and Kit are expressed in bronchial biopsies from lung transplant recipients irrespective of the clinical status of the graft. A role for these factors in tissue repair following lung transplantation is hypothesised.</p
    corecore