28 research outputs found

    Изменение параметров процесса выброса угля и газа в зависимости от длины шпуров для отбойки угля и породы

    Get PDF
    Виконано чисельне моделювання процесу викиду вугілля та метану у вибої одиночної гірничої виробки, що проводиться буропідривним способом. Розглянуто ініціювання процесу викиду у випадках різної довжини шпурів для відбивання вугілля та породи. Проаналізовано зміну розподілів коефіцієнтів проникності поперед вибоєм, значень тиску газу та швидкості утворення порожнини викиду вугілля та газу.Numerical modeling of process of coal and methane outburst in a working face of single opening, what is driving by drill and fire system, is executed. Initiation of coal and methane outburst process in cases of various length of blast-holes is observed. Change of distribution of permeability coefficient ahead of a face, pressure values and speed of formation of outburst cavity is analysed

    Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen.

    Get PDF
    Plants are able to detect insect eggs deposited on leaves. In Arabidopsis, eggs of the butterfly species Pieris brassicae (common name large white) induce plant defenses and activate the salicylic acid (SA) pathway. We previously discovered that oviposition triggers a systemic acquired resistance (SAR) against the bacterial hemibiotroph pathogen Pseudomonas syringae. Here, we show that insect eggs or treatment with egg extract (EE) induce SAR against the fungal necrotroph Botrytis cinerea BMM and the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. This response is abolished in ics1, ald1 and fmo1, indicating that the SA pathway and the N-hydroxypipecolic acid (NHP) pathway are involved. Establishment of EE-induced SAR in distal leaves potentially involves tryptophan-derived metabolites, including camalexin. Indeed, SAR is abolished in the biosynthesis mutants cyp79B2 cyp79B3, cyp71a12 cyp71a13 and pad3-1, and camalexin is toxic to B. cinerea in vitro. This study reveals an interesting mechanism by which lepidopteran eggs interfere with plant-pathogen interactions

    Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators

    Get PDF
    Animals using toxic peptides and proteins for predation or defense typically depend on specialized morphological structures, like fangs, spines, or a stinger, for effective intoxication. Here we show that amphibian poisons instead incorporate their own molecular system for toxin delivery to attacking predators. Skin-secreted peptides, generally considered part of the amphibian immune system, permeabilize oral epithelial tissue and enable fast access of cosecreted toxins to the predator's bloodstream and organs. This absorption-enhancing system exists in at least three distantly related frog lineages and is likely to be a widespread adaptation, determining the outcome of predator-prey encounters in hundreds of species

    Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen

    Get PDF
    Plants are able to detect insect eggs deposited on leaves. In Arabidopsis, eggs of the butterfly species Pieris brassicae (common name large white) induce plant defenses and activate the salicylic acid (SA) pathway. We previously discovered that oviposition triggers a systemic acquired resistance (SAR) against the bacterial hemibiotroph pathogen Pseudomonas syringae. Here, we show that insect eggs or treatment with egg extract (EE) induce SAR against the fungal necrotroph Botrytis cinerea BMM and the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. This response is abolished in ics1, ald1 and fmo1, indicating that the SA pathway and the N-hydroxypipecolic acid (NHP) pathway are involved. Establishment of EE-induced SAR in distal leaves potentially involves tryptophan-derived metabolites, including camalexin. Indeed, SAR is abolished in the biosynthesis mutants cyp79B2 cyp79B3, cyp71a12 cyp71a13 and pad3-1, and camalexin is toxic to B. cinerea in vitro. This study reveals an interesting mechanism by which lepidopteran eggs interfere with plant–pathogen interactions

    Multiple functional self-association interfaces in plant TIR domains

    Get PDF
    Toll/interleukin-1 receptor/resistance protein (TIR) domains are present in plant and animal innate immunity receptors and appear to play a scaffold function in defense signaling. In both systems, self-association of TIR domains is crucial for their function. In plants, the TIR domain is associated with intracellular immunity receptors, known as nucleotide-binding oligomerization domain-like receptors (NLRs). Previous studies from several plant NLRs have identified two distinct interfaces that are required for TIR:TIR dimerization in different NLRs. We show that the two interfaces previously identified are both important for self-association and defense signaling of multiple TIR–NLR proteins. Collectively, this work suggests that there is a common mechanism of TIR domain self-association in signaling across the TIR–NLR class of receptor proteins.This research was supported by the Australian Research Council (ARC) Discovery Projects (DP120100685, DP120103558, and DP160102244) and the National Science Foundation (NSF-IOS-1146793 to B.J.S.). B.K. is a National Health and Medical Research Council Research Fellow (1003325 and 1110971). M.B. and S.J.W. are recipients of ARC Discovery Early Career Research Awards (DE130101292 and DE160100893, respectively)

    What did we achieve with VALITEST an EU project on validation in plant pest diagnostics?

    Full text link
    peer reviewedEnsuring the reliability of diagnostic activities is an essential cornerstone of Plant Health strategies to reduce the risk of entry and spread of plant pests in a region and ultimately their impacts. Diagnostic tests should be validated to ensure that they are fit for purpose. Validation is usually done by diagnostic laboratories although companies commercializing diagnostic kits also produce validation data for their products. Due to the high number of pest , matrix and method combinations and given the significant resources required to validate tests, it is essential that validation data are shared with the entire diagnostic community and produced in a harmonized way to facilitate their use by different stakeholders. Indeed, the selection of tests to be used in specific contexts is not the sole responsibility of diagnostic laboratories and also involve National Plant Protection Organizations. The VALITEST EU project (2018-2021) was established to tackle all these issues. New validation data for tests targeting important pests for the EPPO region were produced. Guidelines to improve and harmonize the validation framework were developed. Sharing of validation data and experience was ensured through the development of new or existing databases, the organization of training courses and the dissemination of the project outputs in scientific publications and Standards. Finally, the involvement of researchers, diagnosticians, policy makers, inspectors, industries etc. and the establishment of the European Plant Diagnostic Industry Association were important actions to strengthen the interactions between Plant Health stakeholders

    <i>Myriophyllum</i> <i>rubricaule</i> sp. nov., a <i>M. aquaticum</i> look-alike only known in cultivation

    Full text link
    A confusingly labeled water-milfoil of obscure status, known only in cultivation, is here formally described as a new species, Myriophyllum rubricaule Valk. &amp; Duist. sp. nov. This species has fully replaced M. aquaticum in the horticultural trade in Europe since the addition of M. aquaticum to the list of invasive alien species of Union concern (EU regulation no. 1143/2014) in 2016. This manuscript provides a morphological description of M. rubricaule sp. nov., and its distinction from M. aquaticum is further supported by molecular data (chloroplast and nuclear loci).</p

    Myriophyllum rubricaule sp. nov., a M. aquaticum look-alike only known in cultivation

    Full text link
    A confusingly labeled water-milfoil of obscure status, known only in cultivation, is here formally described as a new species, Myriophyllum rubricaule Valk. & Duist. sp. nov. This species has fully replaced M. aquaticum in the horticultural trade in Europe since the addition of M. aquaticum to the list of invasive alien species of Union concern (EU regulation no. 1143/2014) in 2016. This manuscript provides a morphological description of M. rubricaule sp. nov., and its distinction from M. aquaticum is further supported by molecular data (chloroplast and nuclear loci)

    Extracellular recognition of oomycetes during biotrophic infection of plants

    Get PDF
    Extracellular recognition of pathogens by plants constitutes an important early detection system in plant immunity. Microbe-derived molecules, also named patterns, can be recognized by pattern recognition receptors (PRRs) on the host cell membrane that trigger plant immune responses. Most knowledge on extracellular pathogen detection by plants comes from research on bacterial and fungal pathogens. For oomycetes, that comprise some of the most destructive plant pathogens, mechanisms of extracellular pattern recognition have only emerged recently. These include newly recognized patterns, e.g., cellulose-binding elicitor lectin, necrosis and ethylene-inducing peptide 1-like proteins (NLPs), and glycoside hydrolase 12, as well as their receptors, e.g., the putative elicitin PRR elicitin response and the NLP PRR receptor-like protein 23. Immunity can also be triggered by the release of endogenous host-derived patterns, as a result of oomycete enzymes or damage. In this review we will describe the types of patterns, both pathogen-derived exogenous and plant-derived endogenous ones, and what is known about their extracellular detection during (hemi-)biotrophic oomycete infection of plants
    corecore