8 research outputs found

    Hydrogen peroxide in breath condensate during a common cold.

    Get PDF
    BACKGROUND: Hydrogen peroxide (H2O2) in exhaled air condensate is elevated in inflammatory disorders of the lower respiratory tract. It is unknown whether viral colds contribute to exhaled H2O2. AIM: To assess exhaled H2O2 during and after a common cold. METHODS: We examined H2O2 in the breath condensate of 20 normal subjects with acute symptoms of a common cold and after recovery 2 weeks later and, similarly, in 10 subjects without infection. H2O2 was measured with a fluorimetric assay. RESULTS: At the time of infection exhaled H2O2 (median, ranges) was 0.20 microM (0.03-1.2 microM), and this decreased to 0.09 microM (< 0.01-0.40 microM) after recovery (p = 0.006). There was no significant difference in lung function (forced vital capacity and forced expiratory volume in 1 sec) during and after colds. In the controls, exhaled H2O2 did not change over a 2-week period. CONCLUSIONS: H2O2 in exhaled air condensate is elevated during a common cold, and returns to normal within 2 weeks of recovery in healthy subjects. Hence, symptomatic upper respiratory tract infection may act as a confounder in studies of H2O2 as a marker of chronic lower airway inflammation

    Development and Function of Immune Cells in an Adolescent Patient with a Deficiency in the Interleukin-10 Receptor

    Get PDF
    OBJECTIVE:: Monogenic defects in the interleukin-10 (IL-10) pathway are extremely rare and cause infantile-onset inflammatory bowel disease (IBD)-like pathology. Understanding how immune responses are dysregulated in monogenic IBD-like diseases can provide valuable insight in “classical” IBD pathogenesis. Here, we studied long-term immune cell development and function in an adolescent IL-10 receptor (IL10RA)-deficient patient who presented in infancy with severe colitis and fistulizing perianal disease and is currently treated with immune suppressants. METHODS:: Biomaterial was collected from the IL10RA-deficient patient, pediatric IBD patients and healthy controls. The frequency and phenotype of immune cells were determined in peripheral blood and intestinal biopsies by flow cytometry and immunohistochemistry. Functional changes in monocyte-derived dendritic cells and T cells were assessed by in vitro activation assays. RESULTS:: The IL10RA-deficient immune system developed normally with respect to numbers and phenotype of circulating immune cells. Despite normal co-stimulatory molecule expression, bacterial lipopolysaccharide-stimulated monocyte-derived dendritic cells from the IL10RA-deficient patient released increased amounts of TNFα compared to healthy controls. Upon T-cell receptor ligation, IL10RA-deficient peripheral blood mononuclear cells released increased amounts of T cell cytokines IFNγ and IL-17 agreeing with high numbers of T-bet and IL-17 cells in intestinal biopsies taken at disease onset. In vitro, the immunosuppressive drug thalidomide used to treat the patient decreased peripheral blood mononuclear cell-derived TNFα production. CONCLUSIONS:: With time and during immunosuppressive treatment the IL10RA- deficient immune system develops relatively normally. Upon activation, IL-10 is crucial for controlling excessive inflammatory cytokine release by dendritic cells and preventing IFNγ and IL-17-mediated T-cell responses

    Electrical field stimulation causes oxidation of exogenous histamine in Krebs-Henseleit buffer:A potential source of error in studies of isolated airways

    No full text
    Electric field stimulation (EFS) relaxes human histamine-precontracted airways in vitro. This relaxation is only partly neurally mediated. Nonneural relaxation has been also shown in blood vessels and is due to the generation of oxygen radicals by EFS. In isolated airways the origin of the nonneural component of the relaxation is not clear. Because exogenous catecholamines are oxidized during EPS of carbogenated Krebs-Henseleit (K-H) buffer, we questioned whether this is also the case for exogenous histamine. Human airways precontracted with histamine or methacholine were exposed to either EFS-stimulated carbogenated K-H buffer that also contained histamine or methacholine or unstimulated buffer. Airways exposed to EFS-stimulated buffer that contained histamine relaxed, whereas airways exposed to buffer containing methacholine or exposed to unstimulated buffer did not. It appeared that the histamine concentrations in the organ baths decreased during 30 min of EFS. This decrease was significantly reduced in the presence of ascorbic acid. We conclude that EFS causes oxidation of histamine in carbogenated K-H buffer, and this may at least partly explain the nonneural component of EFS-induced relaxations of precontracted human isolated airways. Therefore, histamine should not be used to induce precontraction in EFS experiments.</p

    Inflamatory Mechanisms in Bronchial Asthma and COPD

    No full text
    corecore