86 research outputs found
The polycomb group proteins, BMI-1 and EZH2, are tumour-associated antigens
We used SEREX technology to identify novel tumour-associated antigens in patients with primary hepatocellular carcinoma and found serological responses to the polycomb group (PcG) protein BMI-1, which is overexpressed in a range of different tumour types. Further studies identified T-cell responses to both BMI-1 and another PcG protein, EZH2, in cancer patients and at relatively lower levels in some normal donors. We next identified several CD8+ T-cell epitopes derived from BMI-1 and EZH2 and demonstrated that EZH2-derived peptides elicited more significant interferon-γ (IFN-γ) release than BMI-1-derived peptides. That CD8+ T cells were responsible for the observed responses was confirmed for EZH2 by both IFN-γ capture assays and tetramer staining using an HLA-A0201-restricted, EZH2-derived YMSCSFLFNL (aa 666–674) epitope. The ability of YMSCSFLFNL (aa 666–674) to stimulate the in vitro expansion of specific T cells from peripheral blood lymphocytes was greatly enhanced when the CD25+ T-cell population was depleted. EZH2-specific cytotoxic T lymphocyte clones specific for two HLA-A0201 epitopes were generated and found to recognise endogenously processed EZH2 in both HLA-matched fibroblasts and tumour cell lines. Given the widespread overexpression of PcG proteins in cancer and their critical role in oncogenesis, these data suggest that they may be useful targets for cancer immunotherapy
Low BMI-1 expression is associated with an activated BMI-1-driven signature, vascular invasion, and hormone receptor loss in endometrial carcinoma
We studied the expression of polycomb group (PcG) protein BMI-1 in a large population-based patient series of endometrial carcinomas in relation to clinical and molecular phenotype. Also, 57 fresh frozen endometrial carcinomas were studied for the relationship between BMI-1 protein expression, BMI-1 mRNA level, and activation of an 11-gene signature reported to represent a BMI-1-driven pathway. BMI-1 protein expression was significantly weaker in tumours with vascular invasion (P<0.0001), deep myometrial infiltration (P=0.004), and loss of oestrogen receptor (ER) (P<0.0001) and progesterone receptors (PR) (P=0.03). Low BMI-1 protein expression was highly associated with low BMI-1 mRNA expression (P=0.002), and similarly low BMI-1 mRNA expression correlated significantly with vascular invasion, ER and PR loss, and histologic grade 3. In contrast, activation of the reported 11-gene signature, supposed to represent a BMI-1-driven pathway, correlated with low mRNA expression of BMI-1 (P<0.001), hormone receptor loss, presence of vascular invasion, and poor prognosis. We conclude that BMI-1 protein and mRNA expression are significantly correlated and that BMI-1 expression is inversely associated with activation of the 11-gene signature. Loss of BMI-1 seems to be associated with an aggressive phenotype in endometrial carcinomas
Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma
Enhancer of zeste homologue 2 (EZH2), a member of the polycomb group protein family, plays a crucial role in the regulation of embryonic development and has been associated with the regulation of the cell cycle. Recently, several studies have shown that EZH2 is highly expressed in aggressive tumours, including human breast cancer, prostate cancer, and lymphomas. We thus analysed EZH2 expression using real-time reverse transcription–polymerase chain reaction, and correlated its expression status with various clinicopathological parameters in 66 patients with hepatocellular carcinoma (HCC). We found high expression of EZH2 in human liver cancer cell lines. Furthermore, EZH2 gene-expression levels in tumour tissue specimens (0.34±0.52) were significantly higher (P<0.0001) than those in the corresponding nontumour tissue specimens (0.07±0.09). The incidence of cancer cell invasion into the portal vein was significantly higher (P<0.001) in the high EZH2 expression group (26 of the 33, 79%) than in the low expression group (13 of the 33, 39%). However, there was no significant difference in the disease-free survival rate between the two groups. The findings of this study indicate that EZH2 mRNA expression was upregulated in human HCC and may play an important role in tumour progression, especially by facilitating portal vein invasion
Assessment of B Cell Repertoire in Humans
The B cell receptor (BCR) repertoire is highly diverse. Repertoire diversity is achieved centrally by somatic recombination of immunoglobulin (Ig) genes and peripherally by somatic hypermutation and Ig heavy chain class-switching. Throughout these processes, there is selection for functional gene rearrangements, selection against gene combinations resulting in self-reactive BCRs, and selection for BCRs with high affinity for exogenous antigens after challenge. Hence, investigation of BCR repertoires from different groups of B cells can provide information on stages of B cell development and shed light on the etiology of B cell pathologies. In most instances, the third complementarity determining region of the Ig heavy chain (CDR-H3) contributes the majority of amino acids to the antibody/antigen binding interface. Although CDR-H3 spectratype analysis provides information on the overall diversity of BCR repertoires, this fairly simple technique analyzes the relative quantities of CDR-H3 regions of each size, within a range of approximately 10–80 bp, without sequence detail and thus is limited in scope. High-throughput sequencing (HTS) techniques on the Roche 454 GS FLX Titanium system, however, can generate a wide coverage of Ig sequences to provide more qualitative data such as V, D, and J usage as well as detailed CDR3 sequence information. Here we present protocols in detail for CDR-H3 spectratype analysis and HTS of human BCR repertoires
Polycomb genes expression as a predictor of poor clinical outcome in children with medulloblastoma
The polycomb group protein EZH2 is involved in progression of prostate cancer
Prostate cancer is a leading cause of cancer-related death in males and is second only to lung cancer. Although effective surgical and radiation treatments exist for clinically localized prostate cancer, metastatic prostate cancer remains essentially incurable. Here we show, through gene expression profiling(1), that the polycomb group protein enhancer of zeste homolog 2 (EZH2)(2,3) is overexpressed in hormone-refractory, metastatic prostate cancer. Small interfering RNA (siRNA) duplexes(4) targeted against EZH2 reduce the amounts of EZH2 protein present in prostate cells and also inhibit cell proliferation in vitro. Ectopic expression of EZH2 in prostate cells induces transcriptional repression of a specific cohort of genes. Gene silencing mediated by EZH2 requires the SET domain and is attenuated by inhibiting histone deacetylase activity. Amounts of both EZH2 messenger RNA and EZH2 protein are increased in metastatic prostate cancer; in addition, clinically localized prostate cancers that express higher concentrations of EZH2 show a poorer prognosis. Thus, dysregulated expression of EZH2 may be involved in the progression of prostate cancer, as well as being a marker that distinguishes indolent prostate cancer from those at risk of lethal progression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62896/1/nature01075.pd
Epigenetics provides a new generation of oncogenes and tumour-suppressor genes
Cancer is nowadays recognised as a genetic and epigenetic disease. Much effort has been devoted in the last 30 years to the elucidation of the ‘classical' oncogenes and tumour-suppressor genes involved in malignant cell transformation. However, since the acceptance that major disruption of DNA methylation, histone modification and chromatin compartments are a common hallmark of human cancer, epigenetics has come to the fore in cancer research. One piece is still missing from the story: are the epigenetic genes themselves driving forces on the road to tumorigenesis? We are in the early stages of finding the answer, and the data are beginning to appear: knockout mice defective in DNA methyltransferases, methyl-CpG-binding proteins and histone methyltransferases strongly affect the risk of cancer onset; somatic mutations, homozygous deletions and methylation-associated silencing of histone acetyltransferases, histone methyltransferases and chromatin remodelling factors are being found in human tumours; and the first cancer-prone families arising from germline mutations in epigenetic genes, such as hSNF5/INI1, have been described. Even more importantly, all these ‘new' oncogenes and tumour-suppressor genes provide novel molecular targets for designed therapies, and the first DNA-demethylating agents and inhibitors of histone deacetylases are reaching the bedside of patients with haematological malignancies
BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A
10.1186/bcr2354Breast Cancer Research114R6
EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer
Introduction PolycombGroup (PcG) proteins maintain gene repression through histone modifications and have been implicated in stem cell regulation and cancer. EZH2 is part of Polycomb Repressive Complex 2 (PRC2) and trimethylates H3K27. This histone mark recruits the BMI1-containing PRC1 that silences the genes marked by PRC2. Based on their role in stem cells, EZH2 and BMI1 have been predicted to contribute to a poor outcome for cancer patients. Methods We have analysed the expression of EZH2 and BMI1 in a well-characterised dataset of 295 human breast cancer samples. Results Interestingly, although EZH2 overexpression correlates with a poor prognosis in breast cancer, BMI1 overexpression correlates with a good outcome. Although this may reflect transformation of different cell types, we also observed a functional difference. The PcG-target genes INK4A and ARF are not expressed in tumours with high BMI1, but they are expressed in tumours with EZH2 overexpression. ARF expression results in tumour protein P53 (TP53) activation, and we found a significantly higher proportion of TP53 mutations in tumours with high EZH2. This may explain why tumours with high EZH2 respond poorly to therapy, in contrast to tumours with high BMI1. Conclusions Overall, our data highlight that whereas EZH2 and BMI1 may function in a 'linear' pathway in normal development, their overexpression has different functional consequences for breast tumourigenesi
- …
