208 research outputs found

    GTPase-activating protein Rasal1 associates with ZAP-70 of the TCR and negatively regulates T-cell tumor immunity.

    Get PDF
    Immunotherapy involving checkpoint blockades of inhibitory co-receptors is effective in combating cancer. Despite this, the full range of mediators that inhibit T-cell activation and influence anti-tumor immunity is unclear. Here, we identify the GTPase-activating protein (GAP) Rasal1 as a novel TCR-ZAP-70 binding protein that negatively regulates T-cell activation and tumor immunity. Rasal1 inhibits via two pathways, the binding and inhibition of the kinase domain of ZAP-70, and GAP inhibition of the p21ras-ERK pathway. It is expressed in activated CD4 + and CD8 + T-cells, and inhibits CD4 + T-cell responses to antigenic peptides presented by dendritic cells as well as CD4 + T-cell responses to peptide antigens in vivo. Furthermore, siRNA reduction of Rasal1 expression in T-cells shrinks B16 melanoma and EL-4 lymphoma tumors, concurrent with an increase in CD8 + tumor-infiltrating T-cells expressing granzyme B and interferon γ-1. Our findings identify ZAP-70-associated Rasal1 as a new negative regulator of T-cell activation and tumor immunity

    Immune adaptor protein SKAP1 (SKAP-55) forms homodimers as mediated by the N-terminal region.

    Get PDF
    OBJECTIVE: Immune cell adaptor protein SKAP1 couples the antigen-receptor (TCR/CD3) with the activation of LFA-1 adhesion in T-cells. Previous work by ourselves and others have shown that SKAP1 can directly bind to other adaptors such as ADAP and RapL. However, it has been unclear whether SKAP1 can form homodimers with itself and the regions within SKAP1 that mediated homodimer formation. RESULTS: Here, we show that SKAP1 and SKAP2 form homodimers in cells. Homodimer formation of immune adaptor protein SKAP1 (SKAP-55) are mediated by residues A17 to L21 in the SKAP1 N-terminal region. SKAP1 dimer formation was not needed for its binding to RapL. These data indicate that the pathway linking SKAP1 to RapL is not dependent on the homo-dimerization of SKAP1

    The Masticatory Contractile Load Induced Expression and Activation of Akt1/PKBα in Muscle Fibers at the Myotendinous Junction within Muscle-Tendon-Bone Unit

    Get PDF
    The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBα at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBα was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ) areas. In muscle fibers at the MTJ areas, Akt1/PKBα is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBα as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit

    Skyrmion Lattice Phases in Thin Film Multilayer

    Full text link
    Phases of matter are ubiquitous with everyday examples including solids and liquids. In reduced dimensions, particular phases, such as the two-dimensional (2D) hexatic phase and corresponding phase transitions occur. A particularly exciting example of 2D ordered systems are skyrmion lattices, where in contrast to previously studied 2D colloid systems, the skyrmion size and density can be tuned by temperature and magnetic field. This allows us to drive the system from a liquid phase to a hexatic phase as deduced from the analysis of the hexagonal order. Using coarse-grained molecular dynamics simulations of soft disks, we determine the skyrmion interaction potentials and we find that the simulations are able to reproduce the full two-dimensional phase behavior. This shows that not only the static behavior of skyrmions is qualitatively well described in terms of a simple two-dimensional model system but skyrmion lattices are versatile and tunable two-dimensional model systems that allow for studying phases and phase transitions in reduced dimensions.Comment: Corrected Acknowledgement

    Highly Accurate Radar Cross Section and Transfer Function Measurement of a Digital Calibration Transponder without Known Reference - Part I: Measurement & Results

    Get PDF
    Active Radar Calibrators (ARC), also called calibration transponders, are often used as reference targets for absolute radiometric calibration of radar systems due to their large achievable Radar Cross Section (RCS). But before using a transponder as a reference target, the hardware has to be calibrated itself. A novel method, called three-transponder-method, was proposed some years ago and allows for RCS calibration of digital transponders without using any RCS target as reference. In this paper, this technique is further refined and applied to a setup utilizing only one digital transponder. The accurate measurement design is described and a novel, elaborated data processing scheme is developed to minimize remaining noise and clutter effects in the data. A comprehensive error analysis will be presented in the second part of this paper

    Absolute Radiometric Calibration of Broadband X-Band Transponders

    Get PDF
    Spaceborne synthetic aperture radar (SAR) systems are often used for earth observation capable for acquiring accurate high-resolution data. In order to ensure the quality of these SAR data, the SAR system has to be calibrated first. For this purpose active targets with well-known backscatter properties, called transponders, serve as an external reference. The enhancement of the operational bandwidth up to 1.2 GHz of future civil SAR systems requires the development of appropriate broadband transponders and their accurate calibration. In order to be well prepared for these missions, DLR has been developed a broadband X-Band transponder and an innovative technique for the frequency-dependent determination of the transponder’s radar cross section (RCS) which promises an accurate measurement over the full transponder bandwidth. In this paper the calibration of a broadband transponder according to this new approach is described including the analysis of corresponding measurements. The derived results are verified with a second independent calibration method and finally evaluated
    corecore