14 research outputs found

    Superconductivity in Cu_xTiSe_2

    Full text link
    Charge density waves (CDWs) are periodic modulations of the conduction electron density in solids. They are collective states that arise from intrinsic instabilities often present in low dimensional electronic systems. The layered dichalcogenides are the most well-studied examples, with TiSe_2 one of the first CDW-bearing materials known. The competition between CDW and superconducting collective electronic states at low temperatures has long been held and explored, and yet no chemical system has been previously reported where finely controlled chemical tuning allows this competition to be studied in detail. Here we report how, upon controlled intercalation of TiSe_2 with Cu to yield Cu_xTiSe_2, the CDW transition is continuously suppressed, and a new superconducting state emerges near x = 0.04, with a maximum T_c of 4.15 K found at x = 0.08. Cu_xTiSe_2 thus provides the first opportunity to study the CDW to Superconductivity transition in detail through an easily-controllable chemical parameter, and will provide new insights into the behavior of correlated electron systems.Comment: Accepted to Nature Physic

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850

    MBE Surface and Interface Studies

    No full text
    corecore