45 research outputs found

    General Solution of the Quantum Damped Harmonic Oscillator

    Full text link
    In this paper the general solution of the quantum damped harmonic oscillator is given.Comment: Latex ; 10 pages ; no figure ; typos corrected. The quantum damped harmonic oscillator is solved completel

    Heat Kernel for Spin-3/2 Rarita-Schwinger Field in General Covariant Gauge

    Get PDF
    The heat kernel for the spin-3/2 Rarita-Schwinger gauge field on an arbitrary Ricci flat space-time (d>2d>2) is investigated in a family of covariant gauges with one gauge parameter α\alpha. The α\alpha-dependent term of the kernel is expressed by the spin-1/2 heat kernel. It is shown that the axial anomaly and the one-loop divegence of the action are α\alpha-independent, and that the conformal anomaly has an α\alpha-dependent total derivative term in d=2m6d=2m\geq6 dimensions.Comment: 11 pages, latex, ITP-SB-94-3

    Histological development of stapes footplate in human embryos.

    Get PDF
    Normal development of the human stapes footplate was investigated in serial sections by light microscopy. Materials were obtained from 35 Japanese embryos from the 6th to 32nd week of embryonal age. Eighteen embryos up to 16 weeks of age (3.5mm to 105mm in crown-rump length) were examined, focusing particularly on the lamina stapedialis of the otic capsule. The present study showed that primordial formation of the lamina stapedialis appeared in 16mm embryo and that the lamina was completely formed and fused to the base of the annular stapes in a 35mm embryo. In a 50mm embryo, the adult form of stapes was found with a rim and annular ligament. The results, therefore, seemed to essentially agree with the theory of dual origin and development of the footplate proposed by Cauldwell and Anson, and teratogenic agents might affect any stage of the process producing anomalies,</p

    Conducting linear chains of sulphur inside carbon nanotubes

    Get PDF
    Despite extensive research for more than 200 years, the experimental isolation of monatomic sulphur chains, which are believed to exhibit a conducting character, has eluded scientists. Here we report the synthesis of a previously unobserved composite material of elemental sulphur, consisting of monatomic chains stabilized in the constraining volume of a carbon nanotube. This one-dimensional phase is confirmed by high-resolution transmission electron microscopy and synchrotron X-ray diffraction. Interestingly, these one-dimensional sulphur chains exhibit long domain sizes of up to 160 nm and high thermal stability (similar to 800 K). Synchrotron X-ray diffraction shows a sharp structural transition of the one-dimensional sulphur occurring at similar to 450-650 K. Our observations, and corresponding electronic structure and quantum transport calculations, indicate the conducting character of the one-dimensional sulphur chains under ambient pressure. This is in stark contrast to bulk sulphur that needs ultrahigh pressures exceeding similar to 90 GPa to become metallic.ArticleNATURE COMMUNICATIONS. 4:2162 (2013)journal articl

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore