27 research outputs found

    Understanding the structural basis of substrate recognition by Plasmodium falciparum plasmepsin V to aid in the design of potent inhibitors

    No full text
    Plasmodium falciparum plasmepsin V (PfPMV) is an essential aspartic protease required for parasite survival, thus, considered as a potential drug target. This study reports the first detailed structural analysis and molecular dynamics simulation of PfPMV as an apoenzyme and its complexes with the substrate PEXEL as well as with the inhibitor saquinavir. The presence of pro-peptide in PfPMV may not structurally hinder the formation of a functionally competent catalytic active site. The structure of PfPMV-PEXEL complex shows that the unique positions of Glu179 and Gln222 are responsible for providing the specificity of PEXEL substrate with arginine at P3 position. The structural analysis also reveals that the S4 binding pocket in PfPMV is occupied by Ile94, Ala98, Phe370 and Tyr472, and therefore, does not allow binding of pepstatin, a potent inhibitor of most pepsin-like aspartic proteases. Among the screened inhibitors, the HIV-1 protease inhibitors and KNI compounds have higher binding affinities for PfPMV with saquinavir having the highest value. The presence of a flexible group at P2 and a bulky hydrophobic group at P3 position of the inhibitor is preferred in the PfPMV substrate binding pocket. Results from the present study will aid in the design of potent inhibitors of PMV

    Deciphering the mechanism of potent peptidomimetic inhibitors targeting plasmepsins - biochemical and structural insights

    No full text
    Malaria is a deadly disease killing worldwide hundreds of thousands people each year and the responsible parasite has acquired resistance to the available drug combinations. The four vacuolar plasmepsins (PMs) in Plasmodium falciparum involved in hemoglobin (Hb) catabolism represent promising targets to combat drug resistance. High antimalarial activities can be achieved by developing a single drug that would simultaneously target all the vacuolar PMs. We have demonstrated for the first time the use of soluble recombinant plasmepsin II (PMII) for structure-guided drug discovery with KNI inhibitors. Compounds used in this study (KNI-10742, 10743, 10395, 10333, and 10343) exhibit nanomolar inhibition against PMII and are also effective in blocking the activities of PMI and PMIV with the low nanomolar K-i values. The high-resolution crystal structures of PMII-KNI inhibitor complexes reveal interesting features modulating their differential potency. Important individual characteristics of the inhibitors and their importance for potency have been established. The alkylamino analog, KNI-10743, shows intrinsic flexibility at the P2 position that potentiates its interactions with Asp132, Leu133, and Ser134. The phenylacetyl tripeptides, KNI-10333 and KNI-10343, accommodate different -substituents at the P3 phenylacetyl ring that determine the orientation of the ring, thus creating novel hydrogen-bonding contacts. KNI-10743 and KNI-10333 possess significant antimalarial activity, block Hb degradation inside the food vacuole, and show no cytotoxicity on human cells; thus, they can be considered as promising candidates for further optimization. Based on our structural data, novel KNI derivatives with improved antimalarial activity could be designed for potential clinical use. DatabaseStructural data are available in the PDB under the accession numbers , , , , and 5YIA
    corecore