56 research outputs found

    Migrating the SNP array-based homologous recombination deficiency measures to next generation sequencing data of breast cancer

    Get PDF
    The first genomic scar-based homologous recombination deficiency (HRD) measures were produced using SNP arrays. As array-based technology has been largely replaced by next generation sequencing approaches, it has become important to develop algorithms that derive the same type of genomic scar scores from next generation sequencing (whole exome “WXS”, whole genome “WGS”) data. In order to perform this analysis, we introduce here the scarHRD R package and show that using this method the SNP array-based and next generation sequencing-based derivation of HRD scores show good correlation (Pearson correlation between 0.73 and 0.87 depending on the actual HRD measure) and that the NGS-based HRD scores distinguish similarly well between BRCA mutant and BRCA wild-type cases in a cohort of triple-negative breast cancer patients of the TCGA data set

    Biological Stoichiometry in Human Cancer

    Get PDF
    A growing tumor in the body can be considered a complex ecological and evolutionary system. A new eco-evolutionary hypothesis (the "Growth Rate Hypothesis", GRH) proposes that tumors have elevated phosphorus (P) demands due to increased allocation to P-rich nucleic acids, especially ribosomal RNA, to meet the protein synthesis demands of accelerated proliferation.We determined the elemental (C, N, P) and nucleic acid contents of paired malignant and normal tissues from colon, lung, liver, or kidney for 121 patients. Consistent with the GRH, lung and colon tumors were significantly higher (by approximately two-fold) in P content (fraction of dry weight) and RNA content and lower in nitrogen (N):P ratio than paired normal tissue, and P in RNA contributed a significantly larger fraction of total biomass P in malignant relative to normal tissues. Furthermore, patient-specific differences for %P between malignant and normal tissues were positively correlated with such differences for %RNA, both for the overall data and within three of the four organ sites. However, significant differences in %P and %RNA between malignant and normal tissues were not seen in liver and kidney and, overall, RNA contributed only approximately 11% of total tissue P content.Data for lung and colon tumors provide support for the GRH in human cancer. The two-fold amplification of P content in colon and lung tumors may set the stage for potential P-limitation of their proliferation, as such differences often do for rapidly growing biota in ecosystems. However, data for kidney and liver do not support the GRH. To account for these conflicting observations, we suggest that local environments in some organs select for neoplastic cells bearing mutations increasing cell division rate ("r-selected," as in colon and lung) while conditions elsewhere may select for reduced mortality rate ("K-selected," as in liver and kidney)

    Search for the standard model Higgs boson at LEP

    Get PDF

    Benefits, risks, and safety of external beam radiation therapy for breast cancer

    No full text
    Lindsay C Brown,1 Robert W Mutter,1 Michele Y Halyard2 1Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 2Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ, USA Abstract: Breast cancer is a common and complex disease often necessitating multimodality care. Breast cancer may be treated with surgical resection, radiotherapy (RT), and systemic therapy, including chemotherapy, hormonal therapy, and targeted therapies, or a combination thereof. In the past 50 years, RT has played an increasingly significant role in the treatment of breast cancer, resulting in improvements in locoregional control and survival for women undergoing mastectomy who are at high risk of recurrence, and allowing for breast conservation in certain settings. Although radiation provides significant benefit to many women with breast cancer, it is also associated with risks of toxicity, including cardiac and pulmonary toxicity, lymphedema, and secondary malignancy. RT techniques have advanced and continue to evolve dramatically, offering increased precision and reproducibility of treatment delivery and flexibility of treatment schedule. This increased sophistication of RT offers promise of improved outcomes by maintaining or improving efficacy, reducing toxicity, and increasing patient access and convenience. A review of the role of radiation therapy in breast cancer, its associated toxicities and efforts in toxicity reduction is presented. Keywords: breast malignancy, radiotherapy, toxicity, outcome
    • …
    corecore