61 research outputs found

    Structural Brain Changes Related to Disease Duration in Patients with Asthma

    Get PDF
    Dyspnea is the impairing, cardinal symptom patients with asthma repeatedly experience over the course of the disease. However, its accurate perception is also crucial for timely initiation of treatment. Reduced perception of dyspnea is associated with negative treatment outcome, but the underlying brain mechanisms of perceived dyspnea in patients with asthma remain poorly understood. We examined whether increasing disease duration in fourteen patients with mild-to-moderate asthma is related to structural brain changes in the insular cortex and brainstem periaqueductal grey (PAG). In addition, the association between structural brain changes and perceived dyspnea were studied. By using magnetic resonance imaging in combination with voxel-based morphometry, gray matter volumes of the insular cortex and the PAG were analysed and correlated with asthma duration and perceived affective unpleasantness of resistive load induced dyspnea. Whereas no associations were observed for the insular cortex, longer duration of asthma was associated with increased gray matter volume in the PAG. Moreover, increased PAG gray matter volume was related to reduced ratings of dyspnea unpleasantness. Our results demonstrate that increasing disease duration is associated with increased gray matter volume in the brainstem PAG in patients with mild-to-moderate asthma. This structural brain change might contribute to the reduced perception of dyspnea in some patients with asthma and negatively impact the treatment outcome

    Addressing vulnerability, building resilience:community-based adaptation to vector-borne diseases in the context of global change

    Get PDF
    Abstract Background The threat of a rapidly changing planet – of coupled social, environmental and climatic change – pose new conceptual and practical challenges in responding to vector-borne diseases. These include non-linear and uncertain spatial-temporal change dynamics associated with climate, animals, land, water, food, settlement, conflict, ecology and human socio-cultural, economic and political-institutional systems. To date, research efforts have been dominated by disease modeling, which has provided limited practical advice to policymakers and practitioners in developing policies and programmes on the ground. Main body In this paper, we provide an alternative biosocial perspective grounded in social science insights, drawing upon concepts of vulnerability, resilience, participation and community-based adaptation. Our analysis was informed by a realist review (provided in the Additional file 2) focused on seven major climate-sensitive vector-borne diseases: malaria, schistosomiasis, dengue, leishmaniasis, sleeping sickness, chagas disease, and rift valley fever. Here, we situate our analysis of existing community-based interventions within the context of global change processes and the wider social science literature. We identify and discuss best practices and conceptual principles that should guide future community-based efforts to mitigate human vulnerability to vector-borne diseases. We argue that more focused attention and investments are needed in meaningful public participation, appropriate technologies, the strengthening of health systems, sustainable development, wider institutional changes and attention to the social determinants of health, including the drivers of co-infection. Conclusion In order to respond effectively to uncertain future scenarios for vector-borne disease in a changing world, more attention needs to be given to building resilient and equitable systems in the present

    Inhaled furosemide for relief of air hunger versus sense of breathing effort: a randomized controlled trial

    Get PDF
    Background. Inhaled furosemide offers a potentially novel treatment for dyspnoea, which may reflect modulation of pulmonary stretch receptor feedback to the brain. Specificity of relief is unclear because different neural pathways may account for different components of clinical dyspnoea. Our objective was to evaluate if inhaled furosemide relieves the air hunger component (uncomfortable urge to breathe) but not the sense of breathing work/effort of dyspnoea. Methods. A randomised, double blind, placebo-controlled crossover trial in 16 healthy volunteers studied in a university research laboratory. Each participant received 3 mist inhalations (either 40 mg furosemide or 4 ml saline) separated by 30–60 min on 2 test days. Each participant was randomised to mist order ‘furosemide-saline-furosemide’ (n- = 8) or ‘saline-furosemide-saline’ (n = 8) on both days. One day involved hypercapnic air hunger tests (mean ± SD PCO2 = 50 ± 3.7 mmHg; constrained ventilation = 9 ± 1.5 L/min), the other involved work/effort tests with targeted ventilation (17 ± 3.1 L/min) and external resistive load (20cmH2O/L/s). Primary outcome was ratings of air hunger or work/effort every 15 s on a visual analogue scale. During saline inhalations, 1.5 mg furosemide was infused intravenously to match the expected systemic absorption from the lungs when furosemide is inhaled. Corresponding infusions of saline during furosemide inhalations maintained procedural blinding. Average visual analogue scale ratings (%full scale) during the last minute of air hunger or work/effort stimuli were analysed using Linear Mixed Methods. Results. Data from all 16 participants were analysed. Inhaled furosemide relative to inhaled saline significantly improved visual analogues scale ratings of air hunger (Least Squares Mean ± SE − 9.7 ± 2%; p = 0.0015) but not work/effort (+ 1.6 ± 2%; p = 0.903). There were no significant adverse events. Conclusions. Inhaled furosemide was effective at relieving laboratory induced air hunger but not work/effort in healthy adults; this is consistent with the notion that modulation of pulmonary stretch receptor feedback by inhaled furosemide leads to dyspnoea relief that is specific to air hunger, the most unpleasant quality of dyspnoea
    • …
    corecore