154 research outputs found

    Effect of Pulsed or Continuous Delivery of Salt on Sensory Perception Over Short Time Intervals

    Get PDF
    Salt in the human diet is a major risk factor for hypertension and many countries have set targets to reduce salt consumption. Technological solutions are being sought to lower the salt content of processed foods without altering their taste. In this study, the approach was to deliver salt solutions in pulses of different concentrations to determine whether a pulsed delivery profile affected sensory perception of salt. Nine different salt profiles were delivered by a Dynataste device and a trained panel assessed their saltiness using time–intensity and single-score sensory techniques. The profile duration (15 s) was designed to match eating conditions and the effects of intensity and duration of the pulses on sensory perception were investigated. Sensory results from the profiles delivered in either water or in a bouillon base were not statistically different. Maximum perceived salt intensities and the area under the time– intensity curves correlated well with the overall perceived saltiness intensity despite the stimulus being delivered as several pulses. The overall saltiness scores for profiles delivering the same overall amount of sodium were statistically not different from one another suggesting that, in this system, pulsed delivery did not enhance salt perception but the overall amount of salt delivered in each profile did affect sensory perception

    Tourism Partnerships in Protected Areas: Exploring Contributions to Sustainability

    Get PDF
    Partnerships between natural-area managers and the tourism industry have been suggested to contribute to sustainability in protected areas. This article explores how important sustainability outcomes of partnerships are to their members, how well they are realised and the features of partnerships leading to their achievement. In 21 case studies in Australia, interviews (n = 97) and surveys (n = 100) showed that of 14 sustainability outcomes, improved understanding of protected areas values and improved biodiversity conservation were the most important. Other highly ranked outcomes were greater respect for culture, heritage, and/or traditions; improved quality of environmental conditions; social benefits to local communities; and improved economic viability of the protected area. Scores for satisfaction with outcomes were, like those for importance, all high but were less than those for importance for the majority, with improvement in quality of environmental conditions showing the largest gap. The satisfaction score exceeded that for importance only for increased competitiveness of the protected area as a tourist destination. “Brown” aspects of sustainability, i.e., decreased waste or energy use, were among the lowest-scoring outcomes for both importance and satisfaction. The most important factor enabling sustainability outcomes was provision of benefits to partnership members. Others were increased financial support, inclusiveness, supportive organisational and administrative arrangements, direct involvement of decision makers, partnership maturity, creation of new relationships, decreased conflict, and stimulation of innovation. Improving sustainability outcomes, therefore, requires maintaining these partnership attributes and also increasing emphasis on reducing waste and resource use

    Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system

    Get PDF
    Background: To assess the accuracy of fractionated stereotactic radiotherapy (FSRT) using a stereotactic mask fixation system. Patients and Methods: Sixteen patients treated with FSRT were involved in the study. A commercial stereotactic mask fixation system (BrainLAB AG) was used for patient immobilization. Serial CT scans obtained before and during FSRT were used to assess the accuracy of patient immobilization by comparing the isocenter position. Daily portal imaging were acquired to establish day to day patient position variation. Displacement errors along the different directions were calculated as combination of systematic and random errors. Results: The mean isocenter displacements based on localization and verification CT imaging were 0.1 mm (SD 0.3 mm) in the lateral direction, 0.1 mm (SD 0.4 mm) in the anteroposterior, and 0.3 mm (SD 0.4 mm) in craniocaudal direction. The mean 3D displacement was 0.5 mm (SD 0.4 mm), being maximum 1.4 mm. No significant differences were found during the treatment (P = 0.4). The overall isocenter displacement as calculated by 456 anterior and lateral portal images were 0.3 mm (SD 0.9 mm) in the mediolateral direction, -0.2 mm (SD 1 mm) in the anteroposterior direction, and 0.2 mm (SD 1.1 mm) in the craniocaudal direction. The largest displacement of 2.7 mm was seen in the cranio-caudal direction, with 95% of displacements < 2 mm in any direction. Conclusions: The results indicate that the setup error of the presented mask system evaluated by CT verification scans and portal imaging are minimal. Reproducibility of the isocenter position is in the best range of positioning reproducibility reported for other stereotactic systems

    Estimating the Duration of Pertussis Immunity Using Epidemiological Signatures

    Get PDF
    Case notifications of pertussis have shown an increase in a number of countries with high rates of routine pediatric immunization. This has led to significant public health concerns over a possible pertussis re-emergence. A leading proposed explanation for the observed increase in incidence is the loss of immunity to pertussis, which is known to occur after both natural infection and vaccination. Little is known, however, about the typical duration of immunity and its epidemiological implications. Here, we analyze a simple mathematical model, exploring specifically the inter-epidemic period and fade-out frequency. These predictions are then contrasted with detailed incidence data for England and Wales. We find model output to be most sensitive to assumptions concerning naturally acquired immunity, which allows us to estimate the average duration of immunity. Our results support a period of natural immunity that is, on average, long-lasting (at least 30 years) but inherently variable

    Comparative genomics of Cluster O mycobacteriophages

    Get PDF
    Mycobacteriophages - viruses of mycobacterial hosts - are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages - Corndog, Catdawg, Dylan, Firecracker, and YungJamal - designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange

    Ascorbate Biosynthesis during Early Fruit Development Is the Main Reason for Its Accumulation in Kiwi

    Get PDF
    Background: Ascorbic acid (AsA) is a unique antioxidant as well as an enzyme cofactor. Although it has multiple roles in plants, it is unclear how its accumulation is controlled at the expression level, especially in sink tissues. Kiwifruit (Actinidia) is well-known for its high ascorbate content. Our objective was to determine whether AsA accumulates in the fruits primarily through biosynthesis or because it is imported from the foliage. Methodology/Principal Findings: We systematically investigated AsA levels, biosynthetic capacity, and mRNA expression of genes involved in AsA biosynthesis in kiwi (A. deliciosa cv. Qinmei). Recycling and AsA localization were also monitored during fruit development and among different tissue types. Over time, the amount of AsA, with its capacity for higher biosynthesis and lower recycling, peaked at 30 days after anthesis (DAA), and then decreased markedly up to 60 DAA before declining more slowly. Expression of key genes showed similar patterns of change, except for L-galactono-1,4-lactone dehydrogenase and L-galactose-1-phosphate phosphatase (GPP). However, GPP had good correlation with the rate of AsA accumulation. The expression of these genes could be detected in phloem of stem as well as petiole of leaf and fruit. Additionally, fruit petioles had greater ascorbate amounts, although that was the site of lowest expression by most genes. Fruit microtubule tissues also had higher AsA. However, exogenous applications of AsA to those petioles did not lead to its transport into fruits, and distribution of ascorbate was cell-specific in the fruits, with more accumulation occurring in large

    Distributed Dynamical Computation in Neural Circuits with Propagating Coherent Activity Patterns

    Get PDF
    Activity in neural circuits is spatiotemporally organized. Its spatial organization consists of multiple, localized coherent patterns, or patchy clusters. These patterns propagate across the circuits over time. This type of collective behavior has ubiquitously been observed, both in spontaneous activity and evoked responses; its function, however, has remained unclear. We construct a spatially extended, spiking neural circuit that generates emergent spatiotemporal activity patterns, thereby capturing some of the complexities of the patterns observed empirically. We elucidate what kind of fundamental function these patterns can serve by showing how they process information. As self-sustained objects, localized coherent patterns can signal information by propagating across the neural circuit. Computational operations occur when these emergent patterns interact, or collide with each other. The ongoing behaviors of these patterns naturally embody both distributed, parallel computation and cascaded logical operations. Such distributed computations enable the system to work in an inherently flexible and efficient way. Our work leads us to propose that propagating coherent activity patterns are the underlying primitives with which neural circuits carry out distributed dynamical computation
    corecore