37 research outputs found

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200

    Urinary excretion of renin and its biochemical properties in dogs.

    No full text

    Germs, genomics and global public health: How can advances in genomic sciences be integrated into public health in the developing world to deal with infectious diseases?

    Get PDF
    Scientific and technological advances derived from the genomics revolution have a central role to play in dealing with continuing infectious disease threats in the developing world caused by emerging and re-emerging pathogens. These techniques, coupled with increasing knowledge of host-pathogen interactions, can assist in the early identification and containment of outbreaks as well as in the development of preventive vaccination and therapeutic interventions, including the urgent need for new antibiotics. However, the effective application of genomics technologies faces key barriers and challenges which occur at three stages: from the research to the products, from the products to individual patients, and, finally, from patients to entire populations. There needs to be an emphasis on research in areas of greatest need, in facilitating the translation of research into interventions and, finally, the effective delivery of such interventions to those in greatest need. Ultimate success will depend on bringing together science, society and policy to develop effective public health implementation strategies to provide health security and health equity for all peoples
    corecore