279 research outputs found
Recommended from our members
Soft X-ray seeding studies for the SLAC Linac Coherent Light Source II
We present the results from studies of soft X-ray seeding options for the LCLS-II X-ray free electron laser (FEL) at SLAC. The LCLS-II will use superconducting accelerator technology to produce X-ray pulses at up to 1 MHz repetition rate using 4 GeV electron beams. If properly seeded, these pulses will be nearly fully coherent, and highly stable in photon energy, bandwidth, and intensity, thus enabling unique experiments with intense high-resolution soft X-rays. Given the expected electron beam parameters from start to end simulations and predicted FEL performance, our studies reveal echo enabled harmonic generation (EEHG) and soft X-ray self-seeding (SXRSS) as promising and complementary seeding methods. We find that SXRSS has the advantage of simplicity and will deliver 5-35 times higher spectral brightness than EEHG in the 1-2 nm range, but lacks some of the potential for phase-stable multipulse and multicolor FEL operations enabled by external laser seeding with EEHG
High resolution spatial modelling of greenhouse gas emissions from land use change to energy crops in the UK
We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land-use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first-generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second-generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio-physical factors (e.g. the energy density of the crop) and socio-economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation
Nonradioactive heteroduplex tracking assay for the detection of minority-variant chloroquine-resistant Plasmodium falciparum in Madagascar
<p>Abstract</p> <p>Background</p> <p>Strains of <it>Plasmodium falciparum </it>genetically resistant to chloroquine (CQ) due to the presence of <it>pfcrt </it>76T appear to have been recently introduced to the island of Madagascar. The prevalence of such resistant genotypes is reported to be low (< 3%) when evaluated by conventional PCR. However, these methods are insensitive to low levels of mutant parasites present in patients with polyclonal infections. Thus, the current estimates may be an under representation of the prevalence of the CQ-resistant <it>P. falciparum </it>isolates on the island. Previously, minority variant chloroquine resistant parasites were described in Malawian patients using an isotopic heteroduplex tracking assay (HTA), which can detect <it>pfcrt </it>76T-bearing <it>P. falciparum </it>minority variants in individual patients that were undetectable by conventional PCR. However, as this assay required a radiolabeled probe, it could not be used in many resource-limited settings.</p> <p>Methods</p> <p>This study describes a digoxigenin (DIG)-labeled chemiluminescent heteroduplex tracking assay (DIG-HTA) to detect <it>pfcrt </it>76T-bearing minority variant <it>P. falciparum</it>. This assay was compared to restriction fragment length polymorphism (RFLP) analysis and to the isotopic HTA for detection of genetically CQ-resistant parasites in clinical samples.</p> <p>Results</p> <p>Thirty one clinical <it>P. falciparum </it>isolates (15 primary isolates and 16 recurrent isolates) from 17 Malagasy children treated with CQ for uncomplicated malaria were genotyped for the <it>pfcrt </it>K76T mutation. Two (11.7%) of 17 patients harboured genetically CQ-resistant <it>P. falciparum </it>strains after therapy as detected by HTA. RFLP analysis failed to detect any <it>pfcrt </it>K76T-bearing isolates.</p> <p>Conclusion</p> <p>These findings indicate that genetically CQ-resistant <it>P. falciparum </it>are more common than previously thought in Madagascar even though the fitness of the minority variant <it>pfcrt </it>76T parasites remains unclear. In addition, HTAs for malaria drug resistance alleles are promising tools for the surveillance of anti-malarial resistance. The use of a non-radioactive label allows for the use of HTAs in malaria endemic countries.</p
The impact of HIV-1 on the malaria parasite biomass in adults in sub-Saharan Africa contributes to the emergence of antimalarial drug resistance
Background. HIV-related immune-suppression increases the risk of malaria (infection, disease and treatment failure) and probably the circulating parasite biomass, favoring the emergence of drug resistance parasites. Methods. The additional malaria parasite biomass related to HIV-1 co-infection in sub-Saharan Africa was estimated by a mathematical model. Parasite biomass was computed as the incidence rate of clinical malaria episodes multiplied by the number of parasites circulating in the peripheral blood of patients at the time symptoms appear. A mathematical model estimated the influence of HIV-1 infection on parasite density in clinical malaria by country and by age group, malaria transmission intensity and urban/rural area. In a multivariate sensitivity analysis, 95% confidence intervals (CIs) were calculated using the Monte Carlo simulation. Results. The model shows that in 2005 HIV-1 increased the overall malaria parasite biomass by 18.0% (95%CI: 11.6-26.9). The largest relative increase (134.9-243.9%) was found in southern Africa where HIV-1 prevalence is the highest and malaria transmission unstable. The largest absolute increase was found in Zambia, Malawi, the Central African Republic and Mozambique, where both malaria and HIV are highly endemic. A univariate sensitivity analysis shows that estimates are sensitive to the magnitude of the impact of HIV-1 infection on the malaria incidence rates and associated parasite densities. Conclusion. The HIV-1 epidemic by increasing the malaria parasite biomass in sub-Saharan Africa may also increase the emergence of antimalarial drug resistance, potentially affecting the health of the whole population in countries endemic for both HIV-1 and malaria
Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance
BACKGROUND: Preventing the emergence of anti-malarial drug resistance is critical for the success of current malaria elimination efforts. Prevention strategies have focused predominantly on qualitative factors, such as choice of drugs, use of combinations and deployment of multiple first-line treatments. The importance of anti-malarial treatment dosing has been underappreciated. Treatment recommendations are often for the lowest doses that produce "satisfactory" results. METHODS: The probability of de-novo resistant malaria parasites surviving and transmitting depends on the relationship between their degree of resistance and the blood concentration profiles of the anti-malarial drug to which they are exposed. The conditions required for the in-vivo selection of de-novo emergent resistant malaria parasites were examined and relative probabilities assessed. RESULTS: Recrudescence is essential for the transmission of de-novo resistance. For rapidly eliminated anti-malarials high-grade resistance can arise from a single drug exposure, but low-grade resistance can arise only from repeated inadequate treatments. Resistance to artemisinins is, therefore, unlikely to emerge with single drug exposures. Hyperparasitaemic patients are an important source of de-novo anti-malarial drug resistance. Their parasite populations are larger, their control of the infection insufficient, and their rates of recrudescence following anti-malarial treatment are high. As use of substandard drugs, poor adherence, unusual pharmacokinetics, and inadequate immune responses are host characteristics, likely to pertain to each recurrence of infection, a small subgroup of patients provides the particular circumstances conducive to de-novo resistance selection and transmission. CONCLUSION: Current dosing recommendations provide a resistance selection opportunity in those patients with low drug levels and high parasite burdens (often children or pregnant women). Patients with hyperparasitaemia who receive outpatient treatments provide the greatest risk of selecting de-novo resistant parasites. This emphasizes the importance of ensuring that only quality-assured anti-malarial combinations are used, that treatment doses are optimized on the basis of pharmacodynamic and pharmacokinetic assessments in the target populations, and that patients with heavy parasite burdens are identified and receive sufficient treatment to prevent recrudescence
Complex temporal climate signals drive the emergence of human water-borne disease
Predominantly occurring in developing parts of the world, Buruli ulcer is a severely disabling mycobacterium infection which often leads to extensive necrosis of the skin. While the exact route of transmission remains uncertain, like many tropical diseases, associations with climate have been previously observed and could help identify the causative agent's ecological niche. In this paper, links between changes in rainfall and outbreaks of Buruli ulcer in French Guiana, an ultraperipheral European territory in the northeast of South America, were identified using a combination of statistical tests based on singular spectrum analysis, empirical mode decomposition and cross-wavelet coherence analysis. From this, it was possible to postulate for the first time that outbreaks of Buruli ulcer can be triggered by combinations of rainfall patterns occurring on a long (i.e., several years) and short (i.e., seasonal) temporal scale, in addition to stochastic events driven by the El Nino-Southern Oscillation that may disrupt or interact with these patterns. Long-term forecasting of rainfall trends further suggests the possibility of an upcoming outbreak of Buruli ulcer in French Guiana
Competition of Escherichia coli DNA Polymerases I, II and III with DNA Pol IV in Stressed Cells
Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at ∼200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB ∼10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB) repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s), tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also provides a sensitive indicator for DNA polymerase competition and choice in vivo
The effect of alcohol advertising, marketing and portrayal on drinking behaviour in young people: systematic review of prospective cohort studies
<p>Abstract</p> <p>Background</p> <p>The effect of alcohol portrayals and advertising on the drinking behaviour of young people is a matter of much debate. We evaluated the relationship between exposure to alcohol advertising, marketing and portrayal on subsequent drinking behaviour in young people by systematic review of cohort (longitudinal) studies.</p> <p>Methods</p> <p>studies were identified in October 2006 by searches of electronic databases, with no date restriction, supplemented with hand searches of reference lists of retrieved articles. Cohort studies that evaluated exposure to advertising or marketing or alcohol portrayals and drinking at baseline and assessed drinking behaviour at follow-up in young people were selected and reviewed.</p> <p>Results</p> <p>seven cohort studies that followed up more than 13,000 young people aged 10 to 26 years old were reviewed. The studies evaluated a range of different alcohol advertisement and marketing exposures including print and broadcast media. Two studies measured the hours of TV and music video viewing. All measured drinking behaviour using a variety of outcome measures. Two studies evaluated drinkers and non-drinkers separately. Baseline non-drinkers were significantly more likely to have become a drinker at follow-up with greater exposure to alcohol advertisements. There was little difference in drinking frequency at follow-up in baseline drinkers. In studies that included drinkers and non-drinkers, increased exposure at baseline led to significant increased risk of drinking at follow-up. The strength of the relationship varied between studies but effect sizes were generally modest. All studies controlled for age and gender, however potential confounding factors adjusted for in analyses varied from study to study. Important risk factors such as peer drinking and parental attitudes and behaviour were not adequately accounted for in some studies.</p> <p>Conclusion</p> <p>data from prospective cohort studies suggest there is an association between exposure to alcohol advertising or promotional activity and subsequent alcohol consumption in young people. Inferences about the modest effect sizes found are limited by the potential influence of residual or unmeasured confounding.</p
A database of antimalarial drug resistance
A large investment is required to develop, license and deploy a new antimalarial drug. Too often, that investment has been rapidly devalued by the selection of parasite populations resistant to the drug action. To understand the mechanisms of selection, detailed information on the patterns of drug use in a variety of environments, and the geographic and temporal patterns of resistance is needed. Currently, there is no publically-accessible central database that contains information on the levels of resistance to antimalaria drugs. This paper outlines the resources that are available and the steps that might be taken to create a dynamic, open access database that would include current and historical data on clinical efficacy, in vitro responses and molecular markers related to drug resistance in Plasmodium falciparum and Plasmodium vivax. The goal is to include historical and current data on resistance to commonly used drugs, like chloroquine and sulfadoxine-pyrimethamine, and on the many combinations that are now being tested in different settings. The database will be accessible to all on the Web. The information in such a database will inform optimal utilization of current drugs and sustain the longest possible therapeutic life of newly introduced drugs and combinations. The database will protect the valuable investment represented by the development and deployment of novel therapies for malaria
Feeding Cues and Injected Nutrients Induce Acute Expression of Multiple Clock Genes in the Mouse Liver
The circadian clock is closely associated with energy metabolism. The liver clock can rapidly adapt to a new feeding cycle within a few days, whereas the lung clock is gradually entrained over one week. However, the mechanism underlying tissue-specific clock resetting is not fully understood. To characterize the rapid response to feeding cues in the liver clock, we examined the effects of a single time-delayed feeding on circadian rhythms in the liver and lungs of Per2::Luc reporter knockin mice. After adapting to a night-time restricted feeding schedule, the mice were fed according to a 4, 8, or 13 h delayed schedule on the last day. The phase of the liver clock was delayed in all groups with delayed feeding, whereas the lung clock remained unaffected. We then examined the acute response of clock and metabolism-related genes in the liver using focused DNA-microarrays. Clock mutant mice were bred under constant light to attenuate the endogenous circadian rhythm, and gene expression profiles were determined during 24 h of fasting followed by 8 h of feeding. Per2 and Dec1 were significantly increased within 1 h of feeding. Real-time RT-PCR analysis revealed a similarly acute response in hepatic clock gene expression caused by feeding wild type mice after an overnight fast. In addition to Per2 and Dec1, the expression of Per1 increased, and that of Rev-erbα decreased in the liver within 1 h of feeding after fasting, whereas none of these clock genes were affected in the lung. Moreover, an intraperitoneal injection of glucose combined with amino acids, but not either alone, reproduced a similar hepatic response. Our findings show that multiple clock genes respond to nutritional cues within 1 h in the liver but not in the lung
- …