25 research outputs found

    Using Simulated Annealing to Solve the Daily Drayage Problem with Hard Time Windows

    Get PDF
    Drayage is the stage of the intermodal transport that deals with transport of freight on trucks among the intermodal terminal, and customers and suppliers that are located in its hinterland. This work proposes an algorithm based on simulated annealing heuristics to solve the operations of drayage. This algorithm has been used to solve battery problems, demonstrating the validity and suitability of its results, which were compared with exact method

    Rapid Emergence of Free-Riding Behavior in New Pediatric Immunization Programs

    Get PDF
    BACKGROUND: Mathematical models have formalized how free-rider effects can threaten the stability of high vaccine coverage levels under established voluntary vaccination programs. However, little research has addressed the question of when free-riding begins to develop when a new vaccine is first introduced in a population. METHODOLOGY/PRINCIPAL FINDINGS: Here, we combine a game theoretical model of vaccinating behavior with an age-structured compartmental model to analyze rational vaccinating behavior in the first years of a universal immunization program, where a new vaccine is free to all children of a specified age. The model captures how successive birth cohorts face different epidemiological landscapes that have been shaped by the vaccinating decisions of previous birth cohorts, resulting in a strategic interaction between individuals in different birth cohorts. The model predicts a Nash equilibrium coverage level of for the first few birth cohorts under the new program. However, free-riding behavior emerges very quickly, with the Nash equilibrium vaccine coverage dropping significantly within 2-5 years after program initiation. Subsequently, a rich set of coupled dynamics between infection prevalence and vaccinating behaviors is possible, ranging from relatively stable (but reduced) coverage in later birth cohorts to wide fluctuations in vaccine coverage from one birth cohort to the next. Individual tolerance for vaccine risk also starts out at relatively high levels before dropping significantly within a few years. CONCLUSIONS/SIGNIFICANCE: These results suggest that even relatively new immunization programs can be vulnerable to drops in vaccine coverage caused by vaccine scares and exacerbated by herd immunity effects, necessitating vigilance from the start

    Improving robustness of solutions to arc routing problems

    No full text

    Genetic Algorithm and its advances in embracing memetics

    No full text
    A Genetic Algorithm (GA) is a stochastic search method that has been applied successfully for solving a variety of engineering optimization problems which are otherwise difficult to solve using classical, deterministic techniques. GAs are easier to implement as compared to many classical methods, and have thus attracted extensive attention over the last few decades. However, the inherent randomness of these algorithms often hinders convergence to the exact global optimum. In order to enhance their search capability, learning via memetics can be incorporated as an extra step in the genetic search procedure. This idea has been investigated in the literature, showing significant performance improvement. In this chapter, two research works that incorporate memes in distinctly different representations, are presented. In particular, the first work considers meme as a local search process, or an individual learning procedure, the intensity of which is governed by a theoretically derived upper bound. The second work treats meme as a building-block of structured knowledge, one that can be learned and transferred across problem instances for efficient and effective search. In order to showcase the enhancements achieved by incorporating learning via memetics into genetic search, case studies on solving the NP-hard capacitated arc routing problem are presented. Moreover, the application of the second meme representation concept to the emerging field of evolutionary bilevel optimization is briefly discussed

    Decision support tool for dynamic scheduling

    No full text
    Production scheduling in the presence of real-time events is of great importance for the successful implementation of real-world scheduling systems. Most manufacturing systems operate in dynamic environments vulnerable to various stochastic real-time events which continuously forces reconsideration and revision of pre-established schedules. In an uncertain environment, efficient ways to adapt current solutions to unexpected events, are preferable to solutions that soon become obsolete. This reality motivated us to develop a tool that attempts to start filling the gap between scheduling theory and practice. The developed prototype is connected to the MRP software and uses meta heuristics to generate a predictive schedule. Then, whenever disruptions happen, like arrival of new tasks or cancelation of others, the tool starts rescheduling through a dynamic-event module that combines dispatching rules that best fit the performance measures pre-classified by Kano’s model. The proposed tool was tested in an in-depth computational study with dynamic task releases and stochastic execution time. The results demonstrate the effectiveness of the model.- (undefined
    corecore