193 research outputs found
Chlorpromazine for schizophrenia: a Cochrane systematic review of 50 years of randomised controlled trials
BACKGROUND:
Chlorpromazine (CPZ) remains one of the most common drugs used for people with schizophrenia worldwide, and a benchmark against which other treatments can be evaluated. Quantitative reviews are rare; this one evaluates the effects of chlorpromazine in the treatment of schizophrenia in comparison with placebo.
METHODS:
We sought all relevant randomised controlled trials (RCT) comparing chlorpromazine to placebo by electronic and reference searching, and by contacting trial authors and the pharmaceutical industry. Data were extracted from selected trials and, where possible, synthesised and random effects relative risk (RR), the number needed to treat (NNT) and their 95% confidence intervals (CI) calculated.
RESULTS:
Fifty RCTs from 1955–2000 were included with 5276 people randomised to CPZ or placebo. They constitute 2008 person-years spent in trials. Meta-analysis of these trials showed that chlorpromazine promotes a global improvement (n = 1121, 13 RCTs, RR 0.76 CI 0.7 to 0.9, NNT 7 CI 5 to 10), although a considerable placebo response is also seen. People allocated to chlorpromazine tended not to leave trials early in both the short (n = 945, 16 RCTs, RR 0.74 CI 0.5 to 1.1) and medium term (n = 1861, 25 RCTs, RR 0.79 CI 0.6 to 1.1). There were, however, many adverse effects. Chlorpromazine is sedating (n = 1242, 18 RCTs, RR 2.3 CI 1.7 to 3.1, NNH 6 CI 5 to 8), increases a person's chances of experiencing acute movement disorders, Parkinsonism and causes low blood pressure with dizziness and dry mouth.
CONCLUSION:
It is understandable why the World Health Organization (WHO) have endorsed and included chlorpromazine in their list of essential drugs for use in schizophrenia. Low- and middle-income countries may have more complete evidence upon which to base their practice compared with richer nations using recent innovations
Effects of a soft robotic exosuit on the quality and speed of overground walking depends on walking ability after stroke
\ua9 2023, BioMed Central Ltd., part of Springer Nature.Background: Soft robotic exosuits can provide partial dorsiflexor and plantarflexor support in parallel with paretic muscles to improve poststroke walking capacity. Previous results indicate that baseline walking ability may impact a user’s ability to leverage the exosuit assistance, while the effects on continuous walking, walking stability, and muscle slacking have not been evaluated. Here we evaluated the effects of a portable ankle exosuit during continuous comfortable overground walking in 19 individuals with chronic hemiparesis. We also compared two speed-based subgroups (threshold: 0.93 m/s) to address poststroke heterogeneity. Methods: We refined a previously developed portable lightweight soft exosuit to support continuous overground walking. We compared five minutes of continuous walking in a laboratory with the exosuit to walking without the exosuit in terms of ground clearance, foot landing and propulsion, as well as the energy cost of transport, walking stability and plantarflexor muscle slacking. Results: Exosuit assistance was associated with improvements in the targeted gait impairments: 22% increase in ground clearance during swing, 5\ub0 increase in foot-to-floor angle at initial contact, and 22% increase in the center-of-mass propulsion during push-off. The improvements in propulsion and foot landing contributed to a 6.7% (0.04 m/s) increase in walking speed (R 2 = 0.82). This enhancement in gait function was achieved without deterioration in muscle effort, stability or cost of transport. Subgroup analyses revealed that all individuals profited from ground clearance support, but slower individuals leveraged plantarflexor assistance to improve propulsion by 35% to walk 13% faster, while faster individuals did not change either. Conclusions: The immediate restorative benefits of the exosuit presented here underline its promise for rehabilitative gait training in poststroke individuals
Molecular and Cellular Basis of Microvascular Perfusion Deficits Induced by Clostridium perfringens and Clostridium septicum
Reduced tissue perfusion leading to tissue ischemia is a central component of the pathogenesis of myonecrosis caused by Clostridium perfringens. The C. perfringens α-toxin has been shown capable of inducing these changes, but its potential synergy with perfringolysin O (θ-toxin) is less well understood. Similarly, Clostridium septicum is a highly virulent causative agent of spontaneous gas gangrene, but its effect on the microcirculation has not been examined. Therefore, the aim of this study was to use intravital microscopy to examine the effects of C. perfringens and C. septicum on the functional microcirculation, coupled with the use of isogenic toxin mutants to elucidate the role of particular toxins in the resultant microvascular perfusion deficits. This study represents the first time this integrated approach has been used in the analysis of the pathological response to clostridial toxins. Culture supernatants from wild-type C. perfringens induced extensive cell death within 30 min, as assessed by in vivo uptake of propidium iodide. Furthermore, significant reductions in capillary perfusion were observed within 60 min. Depletion of either platelets or neutrophils reduced the alteration in perfusion, consistent with a role for these blood-borne cells in obstructing perfusion. In addition, mutation of either the α-toxin or perfringolysin O structural genes attenuated the reduction in perfusion, a process that was reversed by genetic complementation. C. septicum also induced a marked reduction in perfusion, with the degree of microvascular compromise correlating with the level of the C. septicum α-toxin. Together, these data indicate that as a result of its ability to produce α-toxin and perfringolysin O, C. perfringens rapidly induces irreversible cellular injury and a marked reduction in microvascular perfusion. Since C. septicum induces a similar reduction in microvascular perfusion, it is postulated that this function is central to the pathogenesis of clostridial myonecrosis, irrespective of the causative bacterium
Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens
Clostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections. The complete genome sequences of Clostridium perfringens strain ATCC 13124, a gas gangrene isolate and the species type strain, and the enterotoxin-producing food poisoning strain SM101, were determined and compared with the published C. perfringens strain 13 genome. Comparison of the three genomes revealed considerable genomic diversity with >300 unique "genomic islands" identified, with the majority of these islands unusually clustered on one replichore. PCR-based analysis indicated that the large genomic islands are widely variable across a large collection of C. perfringens strains. These islands encode genes that correlate to differences in virulence and phenotypic characteristics of these strains. Significant differences between the strains include numerous novel mobile elements and genes encoding metabolic capabilities, strain-specific extracellular polysaccharide capsule, sporulation factors, toxins, and other secreted enzymes, providing substantial insight into this medically important bacterial pathogen. ©2006 by Cold Spring Harbor Laboratory Press
Transforming growth factor beta-1 (TGFB1) and peak bone mass: association between intragenic polymorphisms and quantitative ultrasound of the heel
BACKGROUND: Variance of peak bone mass has a substantial genetic component, as has been shown with twin studies examining quantitative measures such as bone mineral density (BMD) and quantitative ultrasound (QUS). Evidence implicating single nucleotide polymorphisms (SNPs) of the transforming growth factor beta-1 (TGFB1) gene is steadily accumulating. However, a comprehensive look at multiple SNPs at this locus for their association with indices of peak bone mass has not been reported. METHODS: A cohort of 653 healthy Caucasian females 18 to 35 years old was genotyped for seven TGFB1 SNPs. Polymorphisms were detected by restriction endonuclease digestion of amplified DNA segments. RESULTS: The frequencies of the least common allele at G-800A, C-509T, codon 10 (L10P), codon 25 (R25P), codon 263 (T263I), C861-20T, and 713-8 delC loci were 0.07, 0.33, 0.41, 0.08, 0.04, 0.25 and 0.01, respectively. A significant association was seen between QUS Stiffness Index (QUS-SI) and the SNP at codon 10 and the linked promoter SNP, C-509T. This association remained significant after multiple regression was used to incorporate important clinical covariates – age, BMI, level of activity, family history, and caffeine intake – into the model. CONCLUSION: The association of QUS-SI with -509T is consistent with a gene-dose effect, while only individuals homozygous for the codon 10P allele showed a significant increase. In this cohort of young healthy Caucasian females, the T allele at position -509 is associated with greater bone mass as measured by calcaneal ultrasound
Oxygen Tension Is a Determinant of the Matrix-Forming Phenotype of Cultured Human Meniscal Fibrochondrocytes
BACKGROUND: Meniscal cartilage displays a poor repair capacity, especially when injury is located in the avascular region of the tissue. Cell-based tissue engineering strategies to generate functional meniscus substitutes is a promising approach to treat meniscus injuries. Meniscus fibrochondrocytes (MFC) can be used in this approach. However, MFC are unable to retain their phenotype when expanded in culture. In this study, we explored the effect of oxygen tension on MFC expansion and on their matrix-forming phenotype. METHODOLOGY/PRINCIPAL FINDINGS: MFC were isolated from human menisci followed by basic fibroblast growth factor (FGF-2) mediated cell expansion in monolayer culture under normoxia (21%O(2)) or hypoxia (3%O(2)). Normoxia and hypoxia expanded MFC were seeded on to a collagen scaffold. The MFC seeded scaffolds (constructs) were cultured in a serum free chondrogenic medium for 3 weeks under normoxia and hypoxia. Constructs containing normoxia-expanded MFC were subsequently cultured under normoxia while those formed from hypoxia-expanded MFC were subsequently cultured under hypoxia. After 3 weeks of in vitro culture, the constructs were assessed biochemically, histologically and for gene expression via real-time reverse transcription-PCR assays. The results showed that constructs under normoxia produced a matrix with enhanced mRNA ratio (3.5-fold higher; p<0.001) of collagen type II to I. This was confirmed by enhanced deposition of collagen II using immuno-histochemistry. Furthermore, the constructs under hypoxia produced a matrix with higher mRNA ratio of aggrecan to versican (3.5-fold, p<0.05). However, both constructs had the same capacity to produce a glycosaminoglycan (GAG) -specific extracellular matrix. CONCLUSIONS: Our data provide evidence that oxygen tension is a key player in determining the matrix phenotype of cultured MFC. These findings suggest that the use of normal and low oxygen tension during MFC expansion and subsequent neo-tissue formation cultures may be important in engineering different regions of the meniscus
Vulnerability of Polarised Intestinal Porcine Epithelial Cells to Mycotoxin Deoxynivalenol Depends on the Route of Application
BACKGROUND AND AIMS: Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal barrier integrity was elucidated. METHODS: A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity. RESULTS: Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3. Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral. Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after 72 hours incubation with DON 2000 ng/mL. CONCLUSIONS: Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same toxin dose from basolateral severely undermines barrier integrity
Marine Biodiversity in South Africa: An Evaluation of Current States of Knowledge
Continental South Africa has a coastline of some 3,650 km and an Exclusive Economic Zone (EEZ) of just over 1 million km2. Waters in the EEZ extend to a depth of 5,700 m, with more than 65% deeper than 2,000 m. Despite its status as a developing nation, South Africa has a relatively strong history of marine taxonomic research and maintains comprehensive and well-curated museum collections totaling over 291,000 records. Over 3 million locality records from more than 23,000 species have been lodged in the regional AfrOBIS (African Ocean Biogeographic Information System) data center (which stores data from a wider African region). A large number of regional guides to the marine fauna and flora are also available and are listed
Novel, Meso-Substituted Cationic Porphyrin Molecule for Photo-Mediated Larval Control of the Dengue Vector Aedes aegypti
Dengue is a life-threatening viral disease of growing importance, transmitted by Aedes mosquito vectors. The control of mosquito larvae is crucial to contain or prevent disease outbreaks, and the discovery of new larvicides able to increase the efficacy and the flexibility of the vector control approach is highly desirable. Porphyrins are a class of molecules which generate reactive oxygen species if excited by visible light, thus inducing oxidative cell damage and cell death. In this study we aimed at assessing the potential of this photo-mediated cytotoxic mechanism to kill Aedes (Stegomyia) aegypti mosquito larvae. The selected porphyrin molecule, meso-tri(N-methylpyridyl),meso-mono(N-tetradecylpyridyl)porphine (C14 for simplicity), killed the larvae at doses lower than 1 µM, and at light intensities 50–100 times lower than those typical of natural sunlight, by damaging their intestinal tissues. The physicochemical properties of C14 make it easily adsorbed into organic material, and we exploited this feature to prepare an ‘insecticidal food’ which efficiently killed the larvae and remained active for at least 14 days after its dispersion in water. This study demonstrated that photo-sensitizing agents are promising tools for the development of new larvicides against mosquito vectors of dengue and other human and animal diseases
- …