8 research outputs found

    Evaluating the Suitability of Using Rat Models for Preclinical Efficacy and Side Effects with Inhaled Corticosteroids Nanosuspension Formulations

    Get PDF
    Inhaled corticosteroids (ICS) are often prescribed as first-line therapy for patients with asthma Despite their efficacy and improved safety profile compared with oral corticosteroids, the potential for systemic side effects continues to cause concern. In order to reduce the potential for systemic side effects, the pharmaceutical industry has begun efforts to generate new drugs with pulmonary-targeted topical efficacy. One of the major challenges of this approach is to differentiate both efficacy and side effects (pulmonary vs. systemic) in a preclinical animal model. In this study, fluticasone and ciclesonide were used as tool compounds to explore the possibility of demonstrating both efficacy and side effects in a rat model using pulmonary delivery via intratracheal (IT) instillation with nanosuspension formulations. The inhibition of neutrophil infiltration into bronchoalveolar lavage fluid (BALF) and cytokine (TNFα) production were utilized to assess pulmonary efficacy, while adrenal and thymus involution as well as plasma corticosterone suppression was measured to assess systemic side effects. Based on neutrophil infiltration and cytokine production data, the ED50s for ciclesonide and fluticasone were calculated to be 0.1 and 0.03 mg, respectively. At the ED50, the average adrenal involution was 7.6 ± 5.3% for ciclesonide versus 16.6 ± 5.1% for fluticasone, while the average thymus involution was 41.0 ± 4.3% for ciclesonide versus 59.5 ± 5.8% for fluticasone. However, the differentiation became less significant when the dose was pushed to the EDmax (0.3 mg for ciclesonide, 0.1 mg for fluticasone). Overall, the efficacy and side effect profiles of the two compounds exhibited differentiation at low to mid doses (0.03–0.1 mg ciclesonide, 0.01–0.03 mg fluticasone), while this differentiation diminished at the maximum efficacious dose (0.3 mg ciclesonide, 0.1 mg fluticasone), likely due to overdosing in this model. We conclude that the rat LPS model using IT administration of nanosuspensions of ICS is a useful tool to demonstrate pulmonary-targeted efficacy and to differentiate the side effects. However, it is only suitable at sub-maximum efficacious levels

    Anesthetics Impact the Resolution of Inflammation

    Get PDF
    Local and volatile anesthetics are widely used for surgery. It is not known whether anesthetics impinge on the orchestrated events in spontaneous resolution of acute inflammation. Here we investigated whether a commonly used local anesthetic (lidocaine) and a widely used inhaled anesthetic (isoflurane) impact the active process of resolution of inflammation.Using murine peritonitis induced by zymosan and a systems approach, we report that lidocaine delayed and blocked key events in resolution of inflammation. Lidocaine inhibited both PMN apoptosis and macrophage uptake of apoptotic PMN, events that contributed to impaired PMN removal from exudates and thereby delayed the onset of resolution of acute inflammation and return to homeostasis. Lidocaine did not alter the levels of specific lipid mediators, including pro-inflammatory leukotriene B(4), prostaglandin E(2) and anti-inflammatory lipoxin A(4), in the cell-free peritoneal lavages. Addition of a lipoxin A(4) stable analog, partially rescued lidocaine-delayed resolution of inflammation. To identify protein components underlying lidocaine's actions in resolution, systematic proteomics was carried out using nanospray-liquid chromatography-tandem mass spectrometry. Lidocaine selectively up-regulated pro-inflammatory proteins including S100A8/9 and CRAMP/LL-37, and down-regulated anti-inflammatory and some pro-resolution peptides and proteins including IL-4, IL-13, TGF-â and Galectin-1. In contrast, the volatile anesthetic isoflurane promoted resolution in this system, diminishing the amplitude of PMN infiltration and shortening the resolution interval (Ri) approximately 50%. In addition, isoflurane down-regulated a panel of pro-inflammatory chemokines and cytokines, as well as proteins known to be active in cell migration and chemotaxis (i.e., CRAMP and cofilin-1). The distinct impact of lidocaine and isoflurane on selective molecules may underlie their opposite actions in resolution of inflammation, namely lidocaine delayed the onset of resolution (T(max)), while isoflurane shortened resolution interval (Ri).Taken together, both local and volatile anesthetics impact endogenous resolution program(s), altering specific resolution indices and selective cellular/molecular components in inflammation-resolution. Isoflurane enhances whereas lidocaine impairs timely resolution of acute inflammation

    The Volatile Anesthetic Isoflurane Increases Endothelial Adenosine Generation via Microparticle Ecto-5′-Nucleotidase (CD73) Release

    Get PDF
    Endothelial dysfunction is common in acute and chronic organ injury. Isoflurane is a widely used halogenated volatile anesthetic during the perioperative period and protects against endothelial cell death and inflammation. In this study, we tested whether isoflurane induces endothelial ecto-5′-nucleotidase (CD73) and cytoprotective adenosine generation to protect against endothelial cell injury. Clinically relevant concentrations of isoflurane induced CD73 activity and increased adenosine generation in cultured human umbilical vein or mouse glomerular endothelial cells. Surprisingly, isoflurane-mediated induction of endothelial CD73 activity occurred within 1 hr and without synthesizing new CD73. We determined that isoflurane rapidly increased CD73 containing endothelial microparticles into the cell culture media. Indeed, microparticles isolated from isoflurane-treated endothelial cells had significantly higher CD73 activity as well as increased CD73 protein. In vivo, plasma from mice anesthetized with isoflurane had significantly higher endothelial cell-derived CD144+ CD73+ microparticles and had increased microparticle CD73 activity compared to plasma from pentobarbital-anesthetized mice. Supporting a critical role of CD73 in isoflurane-mediated endothelial protection, a selective CD73 inhibitor (APCP) prevented isoflurane-induced protection against human endothelial cell inflammation and apoptosis. In addition, isoflurane activated endothelial cells Rho kinase evidenced by myosin phosphatase target subunit-1 and myosin light chain phosphorylation. Furthermore, isoflurane-induced release of CD73 containing microparticles was significantly attenuated by a selective Rho kinase inhibitor (Y27632). Taken together, we conclude that the volatile anesthetic isoflurane causes Rho kinase-mediated release of endothelial microparticles containing preformed CD73 and increase adenosine generation to protect against endothelial apoptosis and inflammation
    corecore