1,514 research outputs found
Recommended from our members
Accurate detection of uniparental disomy and microdeletions by SNP array analysis in myelodysplastic syndromes with normal cytogenetics.
Progress in the management of patients with myelodysplastic syndromes (MDS) has been hampered by the inability to detect cytogenetic abnormalities in 40-60% of cases. We prospectively analyzed matched pairs of bone marrow and buccal cell (normal) DNA samples from 51 MDS patients by single nucleotide polymorphism (SNP) arrays, and identified somatically acquired clonal genomic abnormalities in 21 patients (41%). Among the 33 patients with normal bone marrow cell karyotypes, 5 (15%) had clonal, somatically acquired aberrations by SNP array analysis, including 4 with segmental uniparental disomies (UPD) and 1 with three separate microdeletions. Each abnormality was detected more readily in CD34+ cells than in unselected bone marrow cells. Paired analysis of bone marrow and buccal cell DNA from each patient was necessary to distinguish true clonal genomic abnormalities from inherited copy number variations and regions with apparent loss of heterozygosity. UPDs affecting chromosome 7q were identified in two patients who had a rapidly deteriorating clinical course despite a low-risk International Prognostic Scoring System score. Further studies of larger numbers of patients will be needed to determine whether 7q UPD detected by SNP array analysis will identify higher risk MDS patients at diagnosis, analogous to those with 7q cytogenetic abnormalities
Effects of Environmental Agents on the Attainment of Puberty: Considerations When Assessing Exposure to Environmental Chemicals in the National Children’s Study
The apparent decline in the age at puberty in the United States raises a general level of concern because of the potential clinical and social consequences of such an event. Nutritional status, genetic predisposition (race/ethnicity), and environmental chemicals are associated with altered age at puberty. The Exposure to Chemical Agents Working Group of the National Children’s Study (NCS) presents an approach to assess exposure for chemicals that may affect the age of maturity in children. The process involves conducting the assessment by life stages (i.e., in utero, postnatal, peripubertal), adopting a general categorization of the environmental chemicals by biologic persistence, and collecting and storing biologic specimens that are most likely to yield meaningful information. The analysis of environmental samples and use of questionnaire data are essential in the assessment of chemicals that cannot be measured in biologic specimens, and they can assist in the evaluation of exposure to nonpersistent chemicals. Food and dietary data may be used to determine the extent to which nutrients and chemicals from this pathway contribute to the variance in the timing of puberty. Additional research is necessary in several of these areas and is ongoing. The NCS is uniquely poised to evaluate the effects of environmental chemicals on the age at puberty, and the above approach will allow the NCS to accomplish this task
Conserved Genetic Interactions between Ciliopathy Complexes Cooperatively Support Ciliogenesis and Ciliary Signaling
Mutations in genes encoding cilia proteins cause human ciliopathies, diverse disorders affecting many tissues. Individual genes can be linked to ciliopathies with dramatically different phenotypes, suggesting that genetic modifiers may participate in their pathogenesis. The ciliary transition zone contains two protein complexes affected in the ciliopathies Meckel syndrome (MKS) and nephronophthisis (NPHP). The BBSome is a third protein complex, affected in the ciliopathy Bardet-Biedl syndrome (BBS). We tested whether mutations in MKS, NPHP and BBS complex genes modify the phenotypic consequences of one another in both C. elegans and mice. To this end, we identified TCTN-1, the C. elegans ortholog of vertebrate MKS complex components called Tectonics, as an evolutionarily conserved transition zone protein. Neither disruption of TCTN-1 alone or together with MKS complex components abrogated ciliary structure in C. elegans. In contrast, disruption of TCTN-1 together with either of two NPHP complex components, NPHP-1 or NPHP-4, compromised ciliary structure. Similarly, disruption of an NPHP complex component and the BBS complex component BBS-5 individually did not compromise ciliary structure, but together did. As in nematodes, disrupting two components of the mouse MKS complex did not cause additive phenotypes compared to single mutants. However, disrupting both Tctn1 and either Nphp1 or Nphp4 exacerbated defects in ciliogenesis and cilia-associated developmental signaling, as did disrupting both Tctn1 and the BBSome component Bbs1. Thus, we demonstrate that ciliary complexes act in parallel to support ciliary function and suggest that human ciliopathy phenotypes are altered by genetic interactions between different ciliary biochemical complexes
Tuning of Human Modulation Filters Is Carrier-Frequency Dependent
Licensed under the Creative Commons Attribution License
Quantum interference and Klein tunneling in graphene heterojunctions
The observation of quantum conductance oscillations in mesoscopic systems has
traditionally required the confinement of the carriers to a phase space of
reduced dimensionality. While electron optics such as lensing and focusing have
been demonstrated experimentally, building a collimated electron interferometer
in two unconfined dimensions has remained a challenge due to the difficulty of
creating electrostatic barriers that are sharp on the order of the electron
wavelength. Here, we report the observation of conductance oscillations in
extremely narrow graphene heterostructures where a resonant cavity is formed
between two electrostatically created bipolar junctions. Analysis of the
oscillations confirms that p-n junctions have a collimating effect on
ballistically transmitted carriers. The phase shift observed in the conductance
fringes at low magnetic fields is a signature of the perfect transmission of
carriers normally incident on the junctions and thus constitutes a direct
experimental observation of ``Klein Tunneling.''Comment: 13 pages and 6 figures including supplementary information. The paper
has been modified in light of new theoretical results available at
arXiv:0808.048
High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction
<p>Abstract</p> <p>Background</p> <p>Therapeutic irreversible electroporation (IRE) is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death.</p> <p>Methods</p> <p>A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE). A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for <it>in vivo </it>treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for <it>in vivo </it>experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation.</p> <p>Results</p> <p>No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain.</p> <p>Conclusions</p> <p>H-FIRE is a feasible technique for non-thermal tissue ablation that eliminates muscle contractions seen in IRE treatments performed with unipolar electric pulses. Therefore, it has the potential to be performed clinically without the administration of paralytic agents.</p
Probing the Type I Seesaw Mechanism with Displaced Vertices at the LHC
The observation of Higgs decays into heavy neutrinos would be strong evidence for new physics associated to neutrino masses. In this work we propose a search for such decays within the Type I seesaw model in the few-GeV mass range via displaced vertices. Using 300 fb−1 of integrated luminosity, at 13 TeV, we explore the region of parameter space where such decays are measurable. We show that, after imposing pseudorapidity cuts, there still exists a region where the number of events is larger than O(10). We also find that conventional triggers can greatly limit the sensitivity of our signal, so we display several relevant kinematical distributions which might aid in the optimization of a dedicated trigger selection
The Galactic Center Black Hole Laboratory
The super-massive 4 million solar mass black hole Sagittarius~A* (SgrA*)
shows flare emission from the millimeter to the X-ray domain. A detailed
analysis of the infrared light curves allows us to address the accretion
phenomenon in a statistical way. The analysis shows that the near-infrared
flare amplitudes are dominated by a single state power law, with the low states
in SgrA* limited by confusion through the unresolved stellar background. There
are several dusty objects in the immediate vicinity of SgrA*. The source G2/DSO
is one of them. Its nature is unclear. It may be comparable to similar stellar
dusty sources in the region or may consist predominantly of gas and dust. In
this case a particularly enhanced accretion activity onto SgrA* may be expected
in the near future. Here the interpretation of recent data and ongoing
observations are discussed.Comment: 30 pages - 7 figures - accepted for publication by Springer's
"Fundamental Theories of Physics" series; summarizing GC contributions of 2
conferences: 'Equations of Motion in Relativistic Gravity' at the
Physikzentrum Bad Honnef, Bad Honnef, Germany, (Feb. 17-23, 2013) and the
COST MP0905 'The Galactic Center Black Hole Laboratory' Granada, Spain (Nov.
19 - 22, 2013
A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks
This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST),
Pakistan, and the Higher Education Commission, Pakistan
- …