12 research outputs found

    Suppression of growth by multiplicative white noise in a parametric resonant system

    Full text link
    The author studied the growth of the amplitude in a Mathieu-like equation with multiplicative white noise. The approximate value of the exponent at the extremum on parametric resonance regions was obtained theoretically by introducing the width of time interval, and the exponents were calculated numerically by solving the stochastic differential equations by a symplectic numerical method. The Mathieu-like equation contains a parameter α\alpha that is determined by the intensity of noise and the strength of the coupling between the variable and the noise. The value of α\alpha was restricted not to be negative without loss of generality. It was shown that the exponent decreases with α\alpha, reaches a minimum and increases after that. It was also found that the exponent as a function of α\alpha has only one minimum at α≠0\alpha \neq 0 on parametric resonance regions of α=0\alpha = 0. This minimum value is obtained theoretically and numerically. The existence of the minimum at α≠0\alpha \neq 0 indicates the suppression of the growth by multiplicative white noise.Comment: The title and the description in the manuscript are change

    The interplay of intrinsic and extrinsic bounded noises in genetic networks

    Get PDF
    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a genetic network. The influence of intrinsic and extrinsic noises on genetic networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i)(i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii)(ii) a model of enzymatic futile cycle and (iii)(iii) a genetic toggle switch. In (ii)(ii) and (iii)(iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possibile functional role of bounded noises
    corecore