452 research outputs found

    Background studies and shielding effects for the TPC detector of the CAST experiment

    Get PDF
    Sunset solar axions traversing the intense magnetic field of the CERN Axion Solar Telescope (CAST) experiment may be detected in a Time Projection Chamber (TPC) detector, as X-rays signals. These signals could be masked, however, by the inhomogeneous background of materials in the experimental site. A detailed analysis, based on the detector characteristics, the background radiation at the CAST site, simulations and experimental results, has allowed us to design a shielding which reduces the background level by a factor of ~4 compared to the detector without shielding, depending on its position, in the energy range between 1 and 10 keV. Moreover, this shielding has improved the homogeneity of background measured by the TPC.Comment: 14 pages, 5 figures, accepted in New Journal of Physic

    The CAST Time Projection Chamber

    Get PDF
    One of the three X-ray detectors of the CAST experiment searching for solar axions is a Time Projection Chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity X-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is safely set during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62 %. Shielding has been installed around the detector, lowering the background level to 4.10 x 10^-5 counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass.Comment: 19 pages, 11 figures and images, submitted to New Journal of Physic

    Background study for the pn-CCD detector of CERN Axion Solar Telescope

    Get PDF
    The CERN Axion Solar Telescope (CAST) experiment searches for axions from the Sun converted into photons with energies up to around 10 keV via the inverse Primakoff effect in the high magnetic field of a superconducting Large Hadron Collider (LHC) prototype magnet. A backside illuminated pn-CCD detector in conjunction with an X-ray mirror optics is one of the three detectors used in CAST to register the expected photon signal. Since this signal is very rare and different background components (environmental gamma radiation, cosmic rays, intrinsic radioactive impurities in the set-up, ...) entangle it, a detailed study of the detector background has been undertaken with the aim to understand and further reduce the background level of the detector. The analysis is based on measured data taken during the Phase I of CAST and on Monte Carlo simulations of different background components. This study will show that the observed background level (at a rate of (8.00+-0.07)10^-5 counts/cm^2/s/keV between 1 and 7 keV) seems to be dominated by the external gamma background due to usual activities at the experimental site, while radioactive impurities in the detector itself and cosmic neutrons could make just smaller contribution.Comment: Comments: 10 pages, 9 figures and images, submitted to Astroparticle Physic

    Towards a new generation axion helioscope

    Get PDF
    We study the feasibility of a new generation axion helioscope, the most ambitious and promising detector of solar axions to date. We show that large improvements in magnetic field volume, x-ray focusing optics and detector backgrounds are possible beyond those achieved in the CERN Axion Solar Telescope (CAST). For hadronic models, a sensitivity to the axion-photon coupling of \gagamma\gtrsim {\rm few} \times 10^{-12} GeV1^{-1} is conceivable, 1--1.5 orders of magnitude beyond the CAST sensitivity. If axions also couple to electrons, the Sun produces a larger flux for the same value of the Peccei-Quinn scale, allowing one to probe a broader class of models. Except for the axion dark matter searches, this experiment will be the most sensitive axion search ever, reaching or surpassing the stringent bounds from SN1987A and possibly testing the axion interpretation of anomalous white-dwarf cooling that predicts mam_a of a few meV. Beyond axions, this new instrument will probe entirely unexplored ranges of parameters for a large variety of axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics.Comment: 37 pages, 11 figures, accepted for publication in JCA

    The International Axion Observatory (IAXO)

    Get PDF
    The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 1012^{12} GeV1^{-1}, i.e. 1 - 1.5 orders of magnitude beyond the one currently achieved by CAST. The project relies on improvements in magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to solve the white dwarfs anomaly, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics. This contribution is a summary of our paper [1] to which we refer for further details.Comment: 4 pages, 2 figures. To appear in the proceedings of the 7th Patras Workshop on Axions, WIMPs and WISPs, Mykonos, Greece, 201

    A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research

    Get PDF
    We report on the design, construction and operation of a low background x-ray detection line composed of a shielded Micromegas (micromesh gaseous structure) detector of the microbulk technique. The detector is made from radiopure materials and is placed at the focal point of a \sim~5 cm diameter, 1.3 m focal-length, cone-approximation Wolter I x-ray telescope (XRT) comprised of thermally-formed (or "slumped") glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector) proposed in the conceptual design of the project. It is innovative for two reasons: it is the first time an x-ray optic has been designed and fabricated specifically for axion research, and the first time a Micromegas detector has been operated with an x-ray optic. The line has been installed at one end of the CERN Axion Solar Telescope (CAST) magnet and is currently looking for solar axions. The combination of the XRT and Micromegas detector provides the best signal-to-noise ratio obtained so far by any detection system of the CAST experiment with a background rate of 5.4×\times103  ^{-3}\;counts per hour in the energy region-of-interest and signal spot area.Comment: 21 pages, 16 figure

    Displaced Voices: A Journal of Migration, Archives and Cultural Heritage, Volume 3 Issue 2 (Autumn 2023)

    Get PDF
    Twentieth Century Histories of Civic Society’s Responses to Crises of Displacement: A Special Issue to mark the 70th Anniversary of Refugee Council Displaced Voices is a biannual digital magazine produced twice a year by the Living Refugee Archive team at the University of East London. Displaced Voices aims to provide a digital platform for activists, archivists, researchers, practitioners and academics to contribute to issues pertaining to refugee and migration history; refugee and migrant rights; social justice; cultural heritage and archives. We welcome a range of contributions to the magazine including articles of between 1000-2000 words; reports on fieldwork in archival collections; book recommendations and reviews; and more creative pieces including (but not limited too) cartoons; photography; and poetry. We would also welcome news on activities; publication of reports, projects; letters and news from your own networks. We welcome submissions from all writers whether you are a student, practitioner, activist or established academic. The Displaced Voices online magazine is born out of the collaborative and intersectional work that we have been undertaking through our work with the refugee and migration archives housed at the University of East London. Our work to date has explored the intersections of refugee and migration studies with narrative and life history research linked to oral history methods and archival approaches to the preservation, documentation and accessibility of archival resources recording the refugee experience. This magazine is a collaborative project between the Living Refugee Archive at the University of East London; the Oral History Society Migration Special Interest Group and the International Association for the Study of Forced Migration Working Group on the History of Forced Migration and Refugees. Thematically we are looking to engage with articles that explore the intersection of refugee and forced migration studies; history and cultural heritage studies; narrative research; oral history and archival science

    CAST constraints on the axion-electron coupling

    Full text link
    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g_ae and axion-photon interaction strength g_ag using the CAST phase-I data (vacuum phase). For m_a < 10 meV/c2 we find g_ag x g_ae< 8.1 x 10^-23 GeV^-1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission

    Low Background Micromegas in CAST

    Get PDF
    Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micromegas detectors for the CERN Axion Solar Telescope (CAST), including technological pathfinder activities for the future International Axion Observatory (IAXO). The use of low background techniques and the application of discrimination algorithms based on the high granularity of the readout have led to background levels below 106^{-6} counts/keV/cm2^2/s, more than a factor 100 lower than the first generation of Micromegas detectors. The best levels achieved at the Canfranc Underground Laboratory (LSC) are as low as 107^{-7} counts/keV/cm2^2/s, showing good prospects for the application of this technology in IAXO. The current background model, based on underground and surface measurements, is presented, as well as the strategies to further reduce the background level. Finally, we will describe the R&D paths to achieve sub-keV energy thresholds, which could broaden the physics case of axion helioscopes.Comment: 6 pages, 3 figures, Large TPC Conference 2014, Pari

    Gamma Irradiation Effect of

    Full text link
    In order to know the influence of 60Co gamma radiation, on the germination of two semitropical species, roselle seeds and sunflower were irradiated at the Transelektro LGI-01 of the InstitutoNacional de InvestigacionesNucleares, At doses 0, 5, 10, 15, 20, 25, 30 and 35 Gy, to determine the radiosensitivity curve and to determine the LD50 of both species, under a randomized complete block design with factorial arrangement, Where the study factors were: radiation doses and species. The results indicate that sunflower is more sensitive to gamma radiation than roselle, so the LD50 for sunflower and roselle was not reached, because the doses of radiation used, did not achieve 0% germination. Thus, the radiosensitivity curves were fitted to a linear model, with a high coefficient of determination. From the present investigation, It can be concluded that to determine the LD50 in the species in question, It is necessary to increase the dose of irradiation, perhaps up to 1000 Gy
    corecore