147 research outputs found

    Upgrading the quality of recycled aggregates from construction and demolitionwaste by using a novel brick separation and surface treatment method

    Get PDF
    Mixed recycled aggregates (MRA) from construction and demolition waste (CDW) with high-purity and environmental performance are required for highway construction application in base layer and precast concrete curbs. The main problematic constituents that reduce the quality level of the recycled aggregates applications are brick components, flaky particles, and attached mortar, which make up a large proportion of CDW in some countries. This paper studies the potential of brick separation technology based on shape characteristics in order to increase the recycled concrete aggregates (RCA) purity for MRA quality improvement. MRA after purification was also processed with surface treatment experiment by rotating in a cylinder to improve the shape characteristics and to remove the attached mortar. The purity, strength property, densities, water absorption ratio, shape index, and mortar removal ratio of MRA were studied before and after the use of the brick separation and surface treatment proposed in this study. Finally, the recycled aggregates upgradation solution was adopted in a stationary recycling plant designed for a length of 113 km highway construction. The properties of CDW mixed concrete for precast curbs manufacturing were conducted. The results indicate that problematic fractions (brick components, particle shape, and surface weakness) in the MRA were significantly reduced by using brick separation and surface treatment solution. Above all, it is very important that the proposed brick separation method was verified to be practically adopted in CDW recycling plant for highway base layer construction and concrete curbs manufacturing at a low cost

    PA-Boot: A Formally Verified Authentication Protocol for Multiprocessor Secure Boot

    Full text link
    Hardware supply-chain attacks are raising significant security threats to the boot process of multiprocessor systems. This paper identifies a new, prevalent hardware supply-chain attack surface that can bypass multiprocessor secure boot due to the absence of processor-authentication mechanisms. To defend against such attacks, we present PA-Boot, the first formally verified processor-authentication protocol for secure boot in multiprocessor systems. PA-Boot is proved functionally correct and is guaranteed to detect multiple adversarial behaviors, e.g., processor replacements, man-in-the-middle attacks, and tampering with certificates. The fine-grained formalization of PA-Boot and its fully mechanized security proofs are carried out in the Isabelle/HOL theorem prover with 306 lemmas/theorems and ~7,100 LoC. Experiments on a proof-of-concept implementation indicate that PA-Boot can effectively identify boot-process attacks with a considerably minor overhead and thereby improve the security of multiprocessor systems.Comment: Manuscript submitted to IEEE Trans. Dependable Secure Compu

    Stavudine exposure results in developmental abnormalities by causing DNA damage, inhibiting cell proliferation and inducing apoptosis in mouse embryos

    Get PDF
    Stavudine is an anti-AIDS drug widely used to prevent HIV transmission from pregnant mothers to the fetuses in underdeveloped countries for its low price. However, there is still a controversy on whether stavudine affects embryo development. In the current study, embryotoxicity of stavudine was evaluated using cultured mouse embryos with the concentrations: 5, 10, 15 μM and vehicle control. The data indicated that the effect of stavudine was dose-dependent at early neurogenesis. Stavudine exposure reduced somite numbers, yolk sac diameter, crown-rump length, and increased the rate of embryonic degeneration compared with the control. We chose the lowest but clearly toxic concentration: 5 μM to investigate the molecular mechanisms of the damage. At the molecular level, stavudine produced DNA damage, increased the levels of the phospho-CHK1 and cleaved-caspase-3, and decreased the expression level of proliferating cell nuclear antigen. These changes indicated that stavudine caused a coordinated DNA damage response, inhibited cell proliferation, and induced apoptosis in the embryos. Collectively these results suggest that stavudine exposure disturbs the embryonic development, and its use in pregnant mothers should be re-examined

    Genomewide association study of leprosy.

    Get PDF
    BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae
    corecore