4,441 research outputs found

    Solving the kilo-second QPO problem of the intermediate polar GK Persei

    Get PDF
    We detect the likely optical counterpart to previously reported X-ray QPOs in spectrophotometry of the intermediate polar GK Persei during the 1996 dwarf nova outburst. The characteristic timescales range between 4000--6000 s. Although the QPOs are an order of magnitude longer than those detected in the other dwarf novae we show that a new QPO model is not required to explain the long timescale observed. We demonstrate that the observations are consistent with oscillations being the result of normal-timescale QPOs beating with the spin period of the white dwarf. We determine the spectral class of the companion to be consistent with its quiescent classification and find no significant evidence for irradiation over its inner face. We detect the white dwarf spin period in line fluxes, V/R ratios and Doppler-broadened emission profiles.Comment: 14 pages, 11 figures. Accepted for publication in MNRA

    Long-Term Load Forecasting Considering Volatility Using Multiplicative Error Model

    Full text link
    Long-term load forecasting plays a vital role for utilities and planners in terms of grid development and expansion planning. An overestimate of long-term electricity load will result in substantial wasted investment in the construction of excess power facilities, while an underestimate of future load will result in insufficient generation and unmet demand. This paper presents first-of-its-kind approach to use multiplicative error model (MEM) in forecasting load for long-term horizon. MEM originates from the structure of autoregressive conditional heteroscedasticity (ARCH) model where conditional variance is dynamically parameterized and it multiplicatively interacts with an innovation term of time-series. Historical load data, accessed from a U.S. regional transmission operator, and recession data for years 1993-2016 is used in this study. The superiority of considering volatility is proven by out-of-sample forecast results as well as directional accuracy during the great economic recession of 2008. To incorporate future volatility, backtesting of MEM model is performed. Two performance indicators used to assess the proposed model are mean absolute percentage error (for both in-sample model fit and out-of-sample forecasts) and directional accuracy.Comment: 19 pages, 11 figures, 3 table

    Revealing the Archetype: The Journey of a Trecento Madonna and Child at the National Museum of Scotland

    Get PDF
    The National Museums Scotland Madonna and Child project sought to uncover and document the history of a fine polychrome wood carving attributed to The Master of the Gualino St Catherine and to prepare it for display. A new body of knowledge has been assembled by the interdisciplinary team. The conservation treatment was informed by this work and led to further discoveries: the removal of overpaint exposing a previously hidden underdrawing. The ethics of the treatment decisions, including the removal of the Christ Child’s 1960s’ fingers required team dialogue and was opened up for the public to respond to in a series of blogs. The discovery of a rich polychromy including gold and glazed tin has led to further plans to produce a 3-D colour reconstruction. The collaborations developed during this project will facilitate future joint ventures for polychrome sculpture in Scottish collections

    On Two Complementary Types of Total Time Derivative in Classical Field Theories and Maxwell's Equations

    Get PDF
    Close insight into mathematical and conceptual structure of classical field theories shows serious inconsistencies in their common basis. In other words, we claim in this work to have come across two severe mathematical blunders in the very foundations of theoretical hydrodynamics. One of the defects concerns the traditional treatment of time derivatives in Eulerian hydrodynamic description. The other one resides in the conventional demonstration of the so-called Convection Theorem. Both approaches are thought to be necessary for cross-verification of the standard differential form of continuity equation. Any revision of these fundamental results might have important implications for all classical field theories. Rigorous reconsideration of time derivatives in Eulerian description shows that it evokes Minkowski metric for any flow field domain without any previous postulation. Mathematical approach is developed within the framework of congruences for general 4-dimensional differentiable manifold and the final result is formulated in form of a theorem. A modified version of the Convection Theorem provides a necessary cross-verification for a reconsidered differential form of continuity equation. Although the approach is developed for one-component (scalar) flow field, it can be easily generalized to any tensor field. Some possible implications for classical electrodynamics are also explored.Comment: no figure

    Induced gravitational collapse at extreme cosmological distances: the case of GRB 090423

    Full text link
    CONTEXT: The induced gravitational collapse (IGC) scenario has been introduced in order to explain the most energetic gamma ray bursts (GRBs), Eiso=10^{52}-10^{54}erg, associated with type Ib/c supernovae (SNe). It has led to the concept of binary-driven hypernovae (BdHNe) originating in a tight binary system composed by a FeCO core on the verge of a SN explosion and a companion neutron star (NS). Their evolution is characterized by a rapid sequence of events: [...]. AIMS: We investigate whether GRB 090423, one of the farthest observed GRB at z=8.2, is a member of the BdHN family. METHODS: We compare and contrast the spectra, the luminosity evolution and the detectability in the observations by Swift of GRB 090423 with the corresponding ones of the best known BdHN case, GRB 090618. RESULTS: Identification of constant slope power-law behavior in the late X-ray emission of GRB 090423 and its overlapping with the corresponding one in GRB 090618, measured in a common rest frame, represents the main result of this article. This result represents a very significant step on the way to using the scaling law properties, proven in Episode 3 of this BdHN family, as a cosmological standard candle. CONCLUSIONS: Having identified GRB 090423 as a member of the BdHN family, we can conclude that SN events, leading to NS formation, can already occur already at z=8.2, namely at 650 Myr after the Big Bang. It is then possible that these BdHNe originate stem from 40-60 M_{\odot} binaries. They are probing the Population II stars after the completion and possible disappearance of Population III stars.Comment: 9 pages, 9 figures, to appear on A&

    On the thermal and double episode emissions in GRB 970828

    Full text link
    Following the recent theoretical interpretation of GRB 090618 and GRB 101023, we here interpret GRB 970828 in terms of a double episode emission: the first episode, observed in the first 40 s of the emission, is interpreted as the proto-black-hole emission; the second episode, observed after t0_0+50 s, as a canonical gamma ray burst. The transition between the two episodes marks the black hole formation. The characteristics of the real GRB, in the second episode, are an energy of Etote+e=1.60×1053E_{tot}^{e^+e^-} = 1.60 \times 10^{53} erg, a baryon load of B=7×103B = 7 \times 10^{-3} and a bulk Lorentz factor at transparency of Γ=142.5\Gamma = 142.5. The clear analogy with GRB 090618 would require also in GRB 970828 the presence of a possible supernova. We also infer that the GRB exploded in an environment with a large average particle density 103 \, \approx 10^3 part/cm3^3 and dense clouds characterized by typical dimensions of (48)×1014(4 - 8) \times 10^{14} cm and δn/n10\delta n/n \propto 10. Such an environment is in line with the observed large column density absorption, which might have darkened both the supernova emission and the GRB optical afterglow.Comment: 7 pages, 10 figures, submitted to Ap
    corecore