190 research outputs found
Does the immune reaction cause malignant transformation by disrupting cell-to-cell or cell-to-matrix communications?
Tumor progression: In many (perhaps in all) tumor systems, a malignant cancer is preceded by a benign lesion. Most benign lesions do not transform to malignancy and many regress. The final transformative step to malignancy differs from the preceding steps in, among other things, that it often occurs in the absence of the original carcinogenic stimulus. Mechanism of immunostimulation: Relatively low titers of specific immune reactants are
known to stimulate, but cell-to-cell or cell-to-matrix interactions appear to be major inhibitors of tumor-growth. Therefore, it seems reasonable to hypothesize that the mechanism of immunostimulation may be an interference with cell-to-cell or cell-to-matrix communication by a sub-lethal immune-reaction.
Discussion: While the above hypothesis remains unproven, some evidence suggests that immunity may have a major facilitating effect on tumor growth especially at the time of malignant
transformation. There is even some evidence suggesting that transformation in vivo may seldom occur in the absence of immunostimulation of the premalignant lesion. Positive selection by the immune reaction may be the reason that tumors are immunogenic
Cancer immunotherapy by immunosuppression
We have previously suggested that the stimulatory effect of a weak immune reaction on tumor growth may be necessary for the growth of incipient tumors. In the present paper, we enlarge upon and extend that idea by collecting evidence in the literature bearing upon this new hypothesis that a growing cancer, whether in man or mouse, is throughout its lifespan, probably growing and progressing because of continued immune stimulation by a weak immune reaction. We also suggest that prolonged immunosuppression might interfere with progression and thus be an aid to therapy. While most of the considerable evidence that supports the hypothesis comes from observations of experimental mouse tumors, there is suggestive evidence that human tumors may behave in much the same way, and as far as we can ascertain, there is no present evidence that necessarily refutes the hypothesis
Immunostimulation and Immunoinhibition of Premalignant Lesions
BACKGROUND: The immune reaction may be either stimulatory or inhibitory to tumor growth, depending upon the local ratio of immune reactants to tumor cells. HYPOTHESIS: A tumor-stimulatory immune response may be essential for survival of a neoplasm in vivo and for the biological progression from a premalignant lesion to a malignancy. Neither a positive nor a negative correlation between the magnitude of an immune-cell infiltrate and a cancer's prognosis can reveal whether the infiltrate was stimulating or inhibiting to the tumor's growth unless the position on the nonlinear curve that relates tumor growth to the magnitude of the immune reaction is known. DISCUSSION: This hypothesis is discussed in relation to the development of human malignant melanomas and colorectal cancers
Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer
In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa
Expression of tumour-specific antigens underlies cancer immunoediting
Cancer immunoediting is a process by which immune cells, particularly lymphocytes of the adaptive immune system, protect the host from the development of cancer and alter tumour progression by driving the outgrowth of tumour cells with decreased sensitivity to immune attack1, 2. Carcinogen-induced mouse models of cancer have shown that primary tumour susceptibility is thereby enhanced in immune-compromised mice, whereas the capacity for such tumours to grow after transplantation into wild-type mice is reduced2, 3. However, many questions about the process of cancer immunoediting remain unanswered, in part because of the known antigenic complexity and heterogeneity of carcinogen-induced tumours4. Here we adapted a genetically engineered, autochthonous mouse model of sarcomagenesis to investigate the process of cancer immunoediting. This system allows us to monitor the onset and growth of immunogenic and non-immunogenic tumours induced in situ that harbour identical genetic and histopathological characteristics. By comparing the development of such tumours in immune-competent mice with their development in mice with broad immunodeficiency or specific antigenic tolerance, we show that recognition of tumour-specific antigens by lymphocytes is critical for immunoediting against sarcomas. Furthermore, primary sarcomas were edited to become less immunogenic through the selective outgrowth of cells that were able to escape T lymphocyte attack. Loss of tumour antigen expression or presentation on major histocompatibility complex I was necessary and sufficient for this immunoediting process to occur. These results highlight the importance of tumour-specific-antigen expression in immune surveillance, and potentially, immunotherapy.National Institutes of Health (U.S.) (Grant 1 U54 CA126515-01)National Cancer Institute (U.S.) (Cancer Center Support Grant P30-CA14051)Margaret A. Cunningham Immune Mechanisms in Cancer Research Fellowship AwardJohnD. Proctor FoundationDaniel K. Ludwig Schola
Paradoxes in carcinogenesis: New opportunities for research directions
<p>Abstract</p> <p>Background</p> <p>The prevailing paradigm in cancer research is the somatic mutation theory that posits that cancer begins with a single mutation in a somatic cell followed by successive mutations. Much cancer research involves refining the somatic mutation theory with an ever increasing catalog of genetic changes. The problem is that such research may miss paradoxical aspects of carcinogenesis for which there is no likely explanation under the somatic mutation theory. These paradoxical aspects offer opportunities for new research directions that should not be ignored.</p> <p>Discussion</p> <p>Various paradoxes related to the somatic mutation theory of carcinogenesis are discussed: (1) the presence of large numbers of spatially distinct precancerous lesions at the onset of promotion, (2) the large number of genetic instabilities found in hyperplastic polyps not considered cancer, (3) spontaneous regression, (4) higher incidence of cancer in patients with xeroderma pigmentosa but not in patients with other comparable defects in DNA repair, (5) lower incidence of many cancers except leukemia and testicular cancer in patients with Down's syndrome, (6) cancer developing after normal tissue is transplanted to other parts of the body or next to stroma previously exposed to carcinogens, (7) the lack of tumors when epithelial cells exposed to a carcinogen were transplanted next to normal stroma, (8) the development of cancers when Millipore filters of various pore sizes were was inserted under the skin of rats, but only if the holes were sufficiently small. For the latter paradox, a microarray experiment is proposed to try to better understand the phenomena.</p> <p>Summary</p> <p>The famous physicist Niels Bohr said "How wonderful that we have met with a paradox. Now we have some hope of making progress." The same viewpoint should apply to cancer research. It is easy to ignore this piece of wisdom about the means to advance knowledge, but we do so at our peril.</p
TL1A Selectively Enhances IL-12/IL-18-Induced NK Cell Cytotoxicity against NK-Resistant Tumor Targets
# The Author(s) 2010. This article is published with open access at Springerlink.com Introduction TL1A (TNFSF15) augments IFN-γ production by IL-12/IL-18 responsive human T cells. Its ligand, death domain receptor 3 (DR3), is induced by activation on T and NK cells. Although IL-12/IL-18 induces DR3 expression on most NK cells, addition of TL1A minimally increases IFN-
Constitutive TL1A (TNFSF15) Expression on Lymphoid or Myeloid Cells Leads to Mild Intestinal Inflammation and Fibrosis
TL1A is a member of the TNF superfamily and its expression is increased in the mucosa of inflammatory bowel disease patients. Moreover, a subset of Crohn's disease (CD) patients with the risk TL1A haplotype is associated with elevated TL1A expression and a more severe disease course. To investigate the in vivo role of elevated TL1A expression, we generated two transgenic (Tg) murine models with constitutive Tl1a expression in either lymphoid or myeloid cells. Compared to wildtype (WT) mice, constitutive expression of Tl1a in either lymphoid or myeloid cells showed mild patchy inflammation in the small intestine, which was more prominent in the ileum. In addition, mice with constitutive Tl1a expression exhibited enhanced intestinal and colonic fibrosis compared to WT littermates. The percentage of T cells expressing the gut homing chemokine receptors CCR9 and CCR10 was higher in the Tl1a Tg mice compared to WT littermates. Sustained expression of Tl1A in T cells also lead to increased Foxp3+ Treg cells. T cells or antigen presenting cells (APC) with constitutive expression of Tl1a were found to have a more activated phenotype and mucosal mononuclear cells exhibit enhanced Th1 cytokine activity. These results indicated an important role of TL1A in mucosal T cells and APC function and showed that up-regulation of TL1A expression can promote mucosal inflammation and gut fibrosis
Therapeutic Effects of Autologous Tumor-Derived Nanovesicles on Melanoma Growth and Metastasis
Cancer vaccines with optimal tumor-associated antigens show promise for anti-tumor immunotherapy. Recently, nano-sized vesicles, such as exosomes derived from tumors, were suggested as potential antigen candidates, although the total yield of exosomes is not sufficient for clinical applications. In the present study, we developed a new vaccine strategy based on nano-sized vesicles derived from primary autologous tumors. Through homogenization and sonication of tumor tissues, we achieved high yields of vesicle-bound antigens. These nanovesicles were enriched with antigenic membrane targets but lacked nuclear autoantigens. Furthermore, these nanovesicles together with adjuvant activated dendritic cells in vitro, and induced effective anti-tumor immune responses in both primary and metastatic melanoma mouse models. Therefore, autologous tumor-derived nanovesicles may represent a novel source of antigens with high-level immunogenicity for use in acellular vaccines without compromising safety. Our strategy is cost-effective and can be applied to patient-specific cancer therapeutic vaccination
- …