4 research outputs found

    Successful Spinal Fusion by E. coli-derived BMP-2-adsorbed Porous β-TCP Granules: A Pilot Study

    No full text
    Bone morphogenetic proteins (BMPs) were originally identified as osteoinductive proteins. With cloning of BMP genes, studies of BMPs and their clinical application have advanced. However, with increasing clinical applications, drug delivery systems and production costs have become more important issues. To address these issues, we asked whether E. coli-derived rhBMP-2 (E-BMP-2)-adsorbed porous β-TCP granules could achieve posterolateral lumbar fusion in a rabbit model similar to autogenous bone grafts. Lumbar spinal fusion masses were evaluated by 3-D computed tomography, mechanical testing, and histological analyses 8 weeks after surgery. By these measures E-BMP-2-adsorbed β-TCP granules achieved lumbar spinal fusion in dose-dependent fashion in a rabbit model as well as autogenous bone graft. Our preliminary findings suggest E-BMP-2-adsorbed porous β-TCP could be a novel, effective alternative to autogenous bone grafting for generating new bone and promoting regenerative repair of bone, and potentially utilizable in the clinical setting for treating spinal disorders

    Role of Mineral Nutrients in Plant Growth Under Extreme Temperatures

    No full text
    Food productivity is decreasing with the drastic increase in population, while it is expected that the global population will be nine to ten billion in 2050. Growth, production, and development on whole plant, cell, and subcellular levels are extremely affected by environmental factors particularly with the extreme temperature events (high- or low-temperature stress). Increase in the fluidity of lipid membrane, protein accumulation, and denaturation are the direct effects of high temperature on a plant. Membrane integrity loss, protein deprivation, protein synthesis inhabitation, and inactivation of mitochondrial and chloroplast enzymes are the indirect effects of high temperature. Similarly, the oval abortion, alteration of the pollen tube, reduction in fruit set, pollen sterility, and flower abscission are the consequences of low temperature at the time of product development, which in turn lowers the yield. The judicious nutrient management is essential for improving the plant nutrition status to mitigate the drastic effects of temperature stress as well as for sustainable plant yield under extreme temperature events, because nutrient deficiency results in growth and development problems in 60% cultivars worldwide. Additionally, effective nutrient management increases the temperature stress tolerance in plants. Therefore, the appropriate nutrient application rates and timings are imperative for alleviating the heat stress in plants and can serve as an effective and decent strategy. To minimize the contrasting effects of the environmental stresses, particularly heat stress, several examples of the supplemental applications of N, P, K, Ca, Mg, Se, and Zn are given in detail in this study, to observe how these nutrients reduce the effects of temperature stress in plants. This study concluded that judicious nutrient management minimizes the heat stress and increases the growth and yield of plants
    corecore