232 research outputs found

    Progesterone Metabolism by Human and Rat Hepatic and Intestinal Tissue

    Get PDF
    Following oral administration, the bioavailability of progesterone is low and highly variable. As a result, no clinically relevant, natural progesterone oral formulation is available. After oral delivery, first-pass metabolism initially occurs in the intestines; however, very little information on progesterone metabolism in this organ currently exists. The aim of this study is to investigate the contributions of liver and intestine to progesterone clearance. In the presence of NADPH, a rapid clearance of progesterone was observed in human and rat liver samples (t1/2 2.7 and 2.72 min, respectively). The rate of progesterone depletion in intestine was statistically similar between rat and human (t1/2 197.6 min in rat and 157.2 min in human). However, in the absence of NADPH, progesterone was depleted at a significantly lower rate in rat intestine compared to human. The roles of aldo keto reductases (AKR), xanthine oxidase (XAO) and aldehyde oxidase (AOX) in progesterone metabolism were also investigated. The rate of progesterone depletion was found to be significantly reduced by AKR1C, 1D1 and 1B1 in human liver and by AKR1B1 in human intestine. The inhibition of AOX also caused a significant reduction in progesterone degradation in human liver, whereas no change was observed in the presence of an XAO inhibitor. Understanding the kinetics of intestinal as well as liver metabolism is important for the future development of progesterone oral formulations. This novel information can inform decisions on the development of targeted formulations and help predict dosage regimens

    Intraarticular cortisone injection for osteoarthritis of the hip. Is it effective? Is it safe?

    Get PDF
    Osteoarthritis of the hip is a significant source of morbidity in the elderly. Treatment guidelines are available for the management of hip osteoarthritis, but these do not address the application of intraarticular corticosteroid injection. The intraarticular injection of corticosteroid is used in the management of other large joint osteoarthritic diseases and is well studied in the knee, however, this data cannot be used to make sound clinical decisions regarding its use for hip osteoarthritis. There are also concerns regarding the safety of this modality. Review of the published literature reveals that there are eight trials examining the efficacy of intraarticular corticosteroid injection for hip osteoarthritis and of these only four are randomized controlled trials. In general, the available literature demonstrates a short-term reduction of pain with corticosteroid injection and is indicated for patients refractory to non-pharmacologic or analgesic and NSAID therapy. The use of radiologic-guidance is recommended and, with proper sterile technique, the risk of adverse outcomes is very low. Future randomized controlled trials are needed to further examine the efficacy and safety of intraarticular corticosteroid injection for hip osteoarthritis

    A Novel and Lethal De Novo LQT-3 Mutation in a Newborn with Distinct Molecular Pharmacology and Therapeutic Response

    Get PDF
    SCN5A encodes the alpha-subunit (Na(v)1.5) of the principle Na(+) channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS) variant 3 (LQT-3) in adults by disrupting inactivation of the Na(v)1.5 channel. Pharmacological targeting of mutation-altered Na(+) channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS) and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults.Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C) discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na(+) channel blockers flecainide and mexiletine. Our goal was to determine the Na(+) channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na(+) channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C) and a common variant in KCNH2 (K897T). Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na(+) channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically.The results of our study provide further evidence of the grave vulnerability of newborns to Na(+) channel defects and suggest that both genetic background and age are particularly important in developing a mutation-specific therapeutic personalized approach to manage disorders in the young

    Ethnobotany genomics - discovery and innovation in a new era of exploratory research

    Get PDF
    We present here the first use of DNA barcoding in a new approach to ethnobotany we coined "ethnobotany genomics". This new approach is founded on the concept of 'assemblage' of biodiversity knowledge, which includes a coming together of different ways of knowing and valorizing species variation in a novel approach seeking to add value to both traditional knowledge (TK) and scientific knowledge (SK). We employed contemporary genomic technology, DNA barcoding, as an important tool for identifying cryptic species, which were already recognized ethnotaxa using the TK classification systems of local cultures in the Velliangiri Hills of India. This research is based on several case studies in our lab, which define an approach to that is poised to evolve quickly with the advent of new ideas and technology. Our results show that DNA barcoding validated several new cryptic plant species to science that were previously recognized by TK classifications of the Irulas and Malasars, and were lumped using SK classification. The contribution of the local aboriginal knowledge concerning plant diversity and utility in India is considerable; our study presents new ethnomedicine to science. Ethnobotany genomics can also be used to determine the distribution of rare species and their ecological requirements, including traditional ecological knowledge so that conservation strategies can be implemented. This is aligned with the Convention on Biological Diversity that was signed by over 150 nations, and thus the world's complex array of human-natural-technological relationships has effectively been re-organized

    Treatment with a corticotrophin releasing factor 2 receptor agonist modulates skeletal muscle mass and force production in aged and chronically ill animals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle weakness is associated with a variety of chronic disorders such as emphysema (EMP) and congestive heart failure (CHF) as well as aging. Therapies to treat muscle weakness associated with chronic disease or aging are lacking. Corticotrophin releasing factor 2 receptor (CRF2R) agonists have been shown to maintain skeletal muscle mass and force production in a variety of acute conditions that lead to skeletal muscle wasting.</p> <p>Hypothesis</p> <p>We hypothesize that treating animals with a CRF2R agonist will maintain skeletal muscle mass and force production in animals with chronic disease and in aged animals.</p> <p>Methods</p> <p>We utilized animal models of aging, CHF and EMP to evaluate the potential of CRF2R agonist treatment to maintain skeletal muscle mass and force production in aged animals and animals with CHF and EMP.</p> <p>Results</p> <p>In aged rats, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater extensor digitorum longus (EDL) force production, EDL mass, soleus mass and soleus force production compared to age matched untreated animals. In the hamster EMP model, we demonstrate that treatment with a CRF2R agonist for up to 5 months results in greater EDL force production in EMP hamsters when compared to vehicle treated EMP hamsters and greater EDL mass and force in normal hamsters when compared to vehicle treated normal hamsters. In the rat CHF model, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater EDL and soleus muscle mass and force production in CHF rats and normal rats when compared to the corresponding vehicle treated animals.</p> <p>Conclusions</p> <p>These data demonstrate that the underlying physiological conditions associated with chronic diseases such as CHF and emphysema in addition to aging do not reduce the potential of CRF2R agonists to maintain skeletal muscle mass and force production.</p

    Epithelial cell polarity: a major gatekeeper against cancer?

    Get PDF
    The correct establishment and maintenance of cell polarity are crucial for normal cell physiology and tissue homeostasis. Conversely, loss of cell polarity, tissue disorganisation and excessive cell growth are hallmarks of cancer. In this review, we focus on identifying the stages of tumoural development that are affected by the loss or deregulation of epithelial cell polarity. Asymmetric division has recently emerged as a major regulatory mechanism that controls stem cell numbers and differentiation. Links between cell polarity and asymmetric cell division in the context of cancer will be examined. Apical–basal polarity and cell–cell adhesion are tightly interconnected. Hence, how loss of cell polarity in epithelial cells may promote epithelial mesenchymal transition and metastasis will also be discussed. Altogether, we present the argument that loss of epithelial cell polarity may have an important role in both the initiation of tumourigenesis and in later stages of tumour development, favouring the progression of tumours from benign to malignancy

    Transcriptome Analysis of Synaptoneurosomes Identifies Neuroplasticity Genes Overexpressed in Incipient Alzheimer's Disease

    Get PDF
    In Alzheimer's disease (AD), early deficits in learning and memory are a consequence of synaptic modification induced by toxic beta-amyloid oligomers (oAβ). To identify immediate molecular targets downstream of oAβ binding, we prepared synaptoneurosomes from prefrontal cortex of control and incipient AD (IAD) patients, and isolated mRNAs for comparison of gene expression. This novel approach concentrates synaptic mRNA, thereby increasing the ratio of synaptic to somal mRNA and allowing discrimination of expression changes in synaptically localized genes. In IAD patients, global measures of cognition declined with increasing levels of dimeric Aβ (dAβ). These patients also showed increased expression of neuroplasticity related genes, many encoding 3′UTR consensus sequences that regulate translation in the synapse. An increase in mRNA encoding the GluR2 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) was paralleled by elevated expression of the corresponding protein in IAD. These results imply a functional impact on synaptic transmission as GluR2, if inserted, maintains the receptors in a low conductance state. Some overexpressed genes may induce early deficits in cognition and others compensatory mechanisms, providing targets for intervention to moderate the response to dAβ
    corecore