40 research outputs found

    Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited

    Full text link
    Since the late 1990s predicate invention has been under-explored within inductive logic programming due to difficulties in formulating efficient search mechanisms. However, a recent paper demonstrated that both predicate invention and the learning of recursion can be efficiently implemented for regular and context-free grammars, by way of metalogical substitutions with respect to a modified Prolog meta-interpreter which acts as the learning engine. New predicate symbols are introduced as constants representing existentially quantified higher-order variables. The approach demonstrates that predicate invention can be treated as a form of higher-order logical reasoning. In this paper we generalise the approach of meta-interpretive learning (MIL) to that of learning higher-order dyadic datalog programs. We show that with an infinite signature the higher-order dyadic datalog classH22H^2_2H22has universal Turing expressivity thoughH22H^2_2H22is decidable given a finite signature. Additionally we show that Knuth–Bendix ordering of the hypothesis space together with logarithmic clause bounding allows our MIL implementation MetagolD_{D}Dto PAC-learn minimal cardinalityH22H^2_2H22definitions. This result is consistent with our experiments which indicate that MetagolD_{D}Defficiently learns compactH22H^2_2H22definitions involving predicate invention for learning robotic strategies, the East–West train challenge and NELL. Additionally higher-order concepts were learned in the NELL language learning domain. The Metagol code and datasets described in this paper have been made publicly available on a website to allow reproduction of results in this paper

    Whole-genome sequencing and gene mapping of a newly isolated lytic enterococcal bacteriophage EFRM31

    No full text
    Bacteriophages contribute greatly to bacterial evolution. There has been limited investigation of enterococcal bacteriophages, and only two enterococcal bacteriophages have been sequenced completely. In this study, a novel enterococcal bacteriophage, EFRM31, was isolated from a piggery effluent sample and then characterized. The complete bacteriophage genome was determined by shotgun sequencing. EFRM31 belongs to the family Siphoviridae (order Caudovirales) and has a circular double-stranded DNA genome. The putative EFRM31 genome consists of 16945 nucleotides with a low GC content (34.5%) and does not contain CpG islands. The EFRM31 genome contains 82 putative open reading frames, including 17 with identities to genes required for the assembly of a head–tail bacteriophage and 6 hypothetical proteins of unknown function. In general, the sequencing results from EFRM31 revealed considerable similarity to another enterococcal bacteriophage, EFAP-1. This identity and the order of shared genes suggest a close relationship or a common ancestor for these two bacteriophages.Ramin Mazaheri Nezhad Fard, Mary D. Barton, Jane L. Arthur, Michael W. Heuzenroede
    corecore