51 research outputs found

    On the Peculiarity of Class Reproduction in the Society of Exchange and the Popular Subject of Rising Inequality in the United States

    Get PDF
    Capitalism as a mode of production and a form of social organization differs from all hitherto existing society in that it does not rely on the preservation of traditional hierarchies or on direct coercion to secure its reproduction. Capitalist society coheres on the basis of exchange which establishes a network of interdependent relations between individuals. Drawing on the work of Alfred Sohn-Rethel, this paper engages with the apparent paradox of how the reproduction of class society takes the form of spontaneous exchange transactions between autonomous individuals. The paper further argues that the conceptual basis of cognition is historically and socially conditioned and highlights the unique identity between the structure of exchange and the conceptual mode of thinking. Finally, the paper demonstrates how the hidden character of social domination and β€˜the secret identity’ of commodity form and thought form serve to systematically obscure the true origins and nature of fundamental social problems. The case in point is the popular topic of rising inequality in the United States, a direct outcome of the reproduction of class relations, the underlying cause of which – the deepening division of intellectual and manual labor – is either conveniently ignored or, worse still, glorified

    Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumenβ€”A Metatranscriptomic Approach

    Get PDF
    BACKGROUND: Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. CONCLUSIONS/SIGNIFICANCE: The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes

    The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist

    Get PDF
    Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation
    • …
    corecore