22,094 research outputs found
Non-minimality of corners in subriemannian geometry
We give a short solution to one of the main open problems in subriemannian
geometry. Namely, we prove that length minimizers do not have corner-type
singularities. With this result we solve Problem II of Agrachev's list, and
provide the first general result toward the 30-year-old open problem of
regularity of subriemannian geodesics.Comment: 11 pages, final versio
Acetylene-linked conjugated polymers for sacrificial photocatalytic hydrogen evolution from water
Conjugated organic polymers have shown potential as photocatalysts for hydrogen production by water splitting. Taking advantage of a high throughput screening workflow, two series of acetylene-linked co-polymers were prepared and studied for their potential as photocatalysts for sacrificial hydrogen production from water. It was found that a triethynylbenzene-based polymer with a dibenzo[b,d]thiophene sulfone linker (TE11) had the highest performance in terms of hydrogen evolution rate under visible illumination in the presence of a sacrificial hole-scavenger. Synthetically elaborating the triethynylbenzene linker in TE11 by changing the core and by introducing nitrogen, the resulting hydrogen evolution rate was further increased by a factor of nearly two
Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet
Skin cancer, a major form of cancer, is a critical public health problem with
123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma
cases worldwide each year. The leading cause of skin cancer is high exposure of
skin cells to UV radiation, which can damage the DNA inside skin cells leading
to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed
visually employing clinical screening, a biopsy, dermoscopic analysis, and
histopathological examination. It has been demonstrated that the dermoscopic
analysis in the hands of inexperienced dermatologists may cause a reduction in
diagnostic accuracy. Early detection and screening of skin cancer have the
potential to reduce mortality and morbidity. Previous studies have shown Deep
Learning ability to perform better than human experts in several visual
recognition tasks. In this paper, we propose an efficient seven-way automated
multi-class skin cancer classification system having performance comparable
with expert dermatologists. We used a pretrained MobileNet model to train over
HAM10000 dataset using transfer learning. The model classifies skin lesion
image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36
percent and top3 accuracy of 95.34 percent. The weighted average of precision,
recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The
model has been deployed as a web application for public use at
(https://saketchaturvedi.github.io). This fast, expansible method holds the
potential for substantial clinical impact, including broadening the scope of
primary care practice and augmenting clinical decision-making for dermatology
specialists.Comment: This is a pre-copyedited version of a contribution published in
Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R.,
Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The
definitive authentication version is available online via
https://doi.org/10.1007/978-981-15-3383-9_1
On the Alexandrov Topology of sub-Lorentzian Manifolds
It is commonly known that in Riemannian and sub-Riemannian Geometry, the
metric tensor on a manifold defines a distance function. In Lorentzian
Geometry, instead of a distance function it provides causal relations and the
Lorentzian time-separation function. Both lead to the definition of the
Alexandrov topology, which is linked to the property of strong causality of a
space-time. We studied three possible ways to define the Alexandrov topology on
sub-Lorentzian manifolds, which usually give different topologies, but agree in
the Lorentzian case. We investigated their relationships to each other and the
manifold's original topology and their link to causality.Comment: 20 page
Accelerating Bayesian hierarchical clustering of time series data with a randomised algorithm
We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/
Graphene-based photovoltaic cells for near-field thermal energy conversion
Thermophotovoltaic devices are energy-conversion systems generating an
electric current from the thermal photons radiated by a hot body. In far field,
the efficiency of these systems is limited by the thermodynamic
Schockley-Queisser limit corresponding to the case where the source is a black
body. On the other hand, in near field, the heat flux which can be transferred
to a photovoltaic cell can be several orders of magnitude larger because of the
contribution of evanescent photons. This is particularly true when the source
supports surface polaritons. Unfortunately, in the infrared where these systems
operate, the mismatch between the surface-mode frequency and the semiconductor
gap reduces drastically the potential of this technology. Here we show that
graphene-based hybrid photovoltaic cells can significantly enhance the
generated power paving the way to a promising technology for an intensive
production of electricity from waste heat.Comment: 5 pages, 4 figure
Morbidity and cost burden of methicillin-resistant Staphylococcus aureus in early onset ventilator-associated pneumonia
INTRODUCTION: To gain a better understanding of the clinical and economic outcomes associated with methicillin-resistant Staphylococcus aureus (MRSA) infection in patients with early onset ventilator-associated pneumonia (VAP), we retrospectively analyzed a multihospital US database to identify patients with VAP over a 24 month period (2002–2003). METHOD: Data recorded included physiologic, laboratory, culture, and other clinical variables from 59 institutions. VAP was defined as new positive respiratory culture after at least 24 hours of mechanical ventilation (MV) and the presence of primary or secondary ICD-9-CM diagnosis codes of pneumonia. Outcomes measures included in-hospital morbidity and mortality for the population overall and after onset of VAP (duration of MV, intensive care unit [ICU] stay, in-hospital stay, and case mix and severity-adjusted operating cost). The overall cost was calculated at the hospital level using the Center for Medicare and Medicaid Services Cost/Charge Index for each calendar year. RESULTS: A total of 499 patients were identified as having VAP. S. aureus was the leading organism (31% of isolates). Patients with MRSA were significantly older than patients with methicillin-sensitive Staphylococcus aureus (MSSA; median age 74 versus 67 years, P < 0.05) and more likely to be medical patients. Compared with MSSA patients, MRSA patients on average consumed excess resources of 4.4 (95% confidence interval 0.6–8.2) overall MV days, 3.8 (-0.5 to +8.0) days of inpatient length of stay (LOS), 5.3 (1.0–9.7) ICU days, and US8393 to +US8000 per case after controlling for case mix and severity
Mechanical Metamaterials with Negative Compressibility Transitions
When tensioned, ordinary materials expand along the direction of the applied
force. Here, we explore network concepts to design metamaterials exhibiting
negative compressibility transitions, during which a material undergoes
contraction when tensioned (or expansion when pressured). Continuous
contraction of a material in the same direction of an applied tension, and in
response to this tension, is inherently unstable. The conceptually similar
effect we demonstrate can be achieved, however, through destabilisations of
(meta)stable equilibria of the constituents. These destabilisations give rise
to a stress-induced solid-solid phase transition associated with a twisted
hysteresis curve for the stress-strain relationship. The strain-driven
counterpart of negative compressibility transitions is a force amplification
phenomenon, where an increase in deformation induces a discontinuous increase
in response force. We suggest that the proposed materials could be useful for
the design of actuators, force amplifiers, micro-mechanical controls, and
protective devices.Comment: Supplementary information available at
http://www.nature.com/nmat/journal/v11/n7/abs/nmat3331.htm
- …