14 research outputs found

    Towards a comprehensive understanding of visible-light photogeneration of hydrogen from water using cobalt(ii) polypyridyl catalysts

    No full text
    Homogeneous aqueous solutions of photocatalytic ensembles, consisting of [Ru(bpy)3]2+ as a photosensitizer, ascorbic acid/ascorbate as the electron source, and 10 distinct Co2+-based molecular catalysts, were evaluated for visible-light induced hydrogen evolution using high-throughput screening. The combined results demonstrate that Co2+ complexes bearing tetradentate ligands yield more active photocatalytic compositions than their congeners with pentadentate ligands while operating with high catalyst stability. Additionally, molecular Co2+ catalysts with cis open coordination sites appear to be significantly more active for hydrogen evolution than those with trans open sites. As evidenced by mass spectrometric analysis of the reactor headspace and associated deuteration experiments, the H2 gas generated in all instances was derived from aqueous protons. One of the most promising cis-disposed Co2+ species, [Co(bpyPY2Me)(CH3CN)(CF3SO3)](CF 3SO3) (1), engages in highly efficient hydrogen evolving photocatalysis, achieving a turnover number of 4200 (H2/Co) and a turnover frequency of 3200 (H2/Co per h) at pH 4 under simulated sunlight (AM 1.5G, 100 mW cm-2) at room temperature. At equimolar concentrations of photosensitizer and 1, the total hydrogen produced appears to be exclusively limited by the photostability of [Ru(bpy)3] 2+, which was observed to decompose into an Ru(bpy) 2-ascorbate adduct, as evidenced by HPLC and ESI-MS experiments. Lowering the operating temperature from 27 to 5 °C significantly attenuates bpy dissociation from the sensitizer, resulting in a net ∼two-fold increase in hydrogen production from this composition. The primary electron transfer steps of this photocatalytic ensemble were investigated by nanosecond transient absorption spectroscopy. Photoexcited [Ru(bpy)3]2+ undergoes reductive quenching by ascorbic acid/ascorbate (kq = 2.6 × 107 M-1 s-1), releasing [Ru(bpy) 3]+ from the encounter solvent cage with an efficiency of 55 ± 5%. In the presence of catalyst 1, [Ru(bpy)3]+ generated in the initial flash-quench experiment transfers an electron (k et = 2 × 109 M-1 s-1) at an efficiency of 85 ± 10% to the catalyst, which is believed to enter the hydrogen evolution cycle subsequently. Using a combinatorial approach, all ten Co2+ catalysts were evaluated for their potential to operate under neutral pH 7.0 conditions. Catalyst 7, [Co(PY4MeH2)(CH 3CN)(CF3SO3)](CF3SO3), was revealed to be most promising, as its performance metrics were only marginally affected by pH and turnover numbers greater than 1000 were easily obtained in photocatalytic hydrogen generation. These comprehensive findings provide guidelines for the development of molecular compositions capable of evolving hydrogen from purely aqueous media. This journal is © the Partner Organisations 2014

    Catalytic proton reduction with transition metal complexes of the redox-active ligand bpy2PYMe

    Get PDF
    A new pentadentate, redox-active ligand bpy2PYMe has been synthesized and its corresponding transition metal complexes of Fe2+ (1), Co 2+ (2), Ni2+ (3), Cu2+ (4), and Zn2+ (5) have been investigated for electro- and photo-catalytic proton reduction in acetonitrile and water, respectively. Under weak acid conditions, the Co complex displays catalytic onset at potentials similar to those of the ligand centered reductions in the absence of acid. Related Co complexes devoid of ligand redox activity catalyze H2 evolution under similar conditions at significantly higher overpotentials, showcasing the beneficial effect of combining ligand-centered redox activity with a redox-active Co center. Furthermore, turnover numbers as high as 1630 could be obtained under aqueous photocatalytic conditions using [Ru(bpy)3]2+ as a photosensitizer. Under those conditions catalytic hydrogen production was solely limited by photosensitizer stability. Introduction of an electron withdrawing CF3 group into the pyridine moiety of the ligand as in bpy2PYMe-CF3 renders its corresponding Co complex 6 less active for proton reduction in electro- and photocatalytic experiments. This surprising effect of ligand substitution was investigated by means of density functional theory calculations which suggest the importance of electronic communication between Co1+ and the redox-active ligand. Taken together, the results provide a path forward in the design of robust molecular catalysts in aqueous media with minimized overpotential by exploiting the synergy between redox-active metal and ligand components. © 2013 The Royal Society of Chemistry
    corecore