28 research outputs found

    Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels

    Get PDF
    Molecular determinants of ion channel tetramerization are well characterized, but those involved in heteromeric channel assembly are less clearly understood. The heteromeric composition of native channels is often precisely controlled. Cyclic nucleotide-gated (CNG) channels from rod photoreceptors exhibit a 3:1 stoichiometry of CNGA1 and CNGB1 subunits that tunes the channels for their specialized role in phototransduction. Here we show, using electrophysiology, fluorescence, biochemistry, and X-ray crystallography, that the mechanism for this controlled assembly is the formation of a parallel 3-helix coiled-coil domain of the carboxy-terminal leucine zipper region of CNGA1 subunits, constraining the channel to contain three CNGA1 subunits, followed by preferential incorporation of a single CNGB1 subunit. Deletion of the carboxy-terminal leucine zipper domain relaxed the constraint and permitted multiple CNGB1 subunits in the channel. The X-ray crystal structures of the parallel 3-helix coiled-coil domains of CNGA1 and CNGA3 subunits were similar, suggesting that a similar mechanism controls the stoichiometry of cone CNG channels

    The Na(+)/Ca(2+) exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response

    Get PDF
    Sensory perception requires accurate encoding of stimulus information by sensory receptor cells. We identified NCKX4, a potassium-dependent Na(+)/Ca(2+) exchanger, as being necessary for rapid response termination and proper adaptation of vertebrate olfactory sensory neurons (OSNs). Nckx4(-/-) (also known as Slc24a4) mouse OSNs displayed substantially prolonged responses and stronger adaptation. Single-cell electrophysiological analyses revealed that the majority of Na(+)-dependent Ca(2+) exchange in OSNs relevant to sensory transduction is a result of NCKX4 and that Nckx4(-/-) mouse OSNs are deficient in encoding action potentials on repeated stimulation. Olfactory-specific Nckx4(-/-) mice had lower body weights and a reduced ability to locate an odorous source. These results establish the role of NCKX4 in shaping olfactory responses and suggest that rapid response termination and proper adaptation of peripheral sensory receptor cells tune the sensory system for optimal perception

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link
    corecore