6 research outputs found

    Using X-ray fluorescence to assess the chemical composition and resistivity of simulated cementitious pore solutions

    No full text
    Ionic transport in concrete can be described using the formation factor, which is the ratio of the resistivity of the concrete and the pore solution resistivity. The pore solution resistivity may be assumed, directly measured, or computed from the pore solution composition. This paper describes an experimental investigation aimed at determining the feasibility of using X-ray fluorescence (XRF) to obtain the alkali concentrations of the pore solution which enable the calculation of pore solution resistivity. In order to do this, simulated pore solutions containing known amounts of sodium and potassium were prepared and analyzed using XRF. XRF was performed on two sample types: (1) the simulated solutions and (2) beads where the water from the solution is evaporated and the remaining material is fused using a fluxing agent. The compositions obtained experimentally from XRF are compared to known compositions to demonstrate the accuracy of the technique. In addition, the measured simulated pore solution resistivity was compared to the simulated pore solution resistivity calculated from XRF measurements. The results indicate that the composition had an average error of 0.50% while the estimated simulated pore solution resistivity had an average error of 10.95%. The results of this study indicate that XRF has the potential to be an alternative to the time consuming methods currently used to measure the composition of the pore solution

    Mitigation Effect of Waste Glass Powders on Alkali–Silica Reaction (ASR) Expansion in Cementitious Composite

    No full text
    The effects of different contents and particle sizes of waste glass powder on alkali–silica reaction (ASR) expansion of cementitious composite bar were investigated in this study. Waste glass powder with particle size less than 300 μm exhibits an excellent mitigation effect on ASR expansion. With larger content and smaller particle size, the mitiga- tion effect of waste glass powder on ASR expansion gradually increases. The mitigation effect of waste glass powder with particle size ranging from 38 to 53 μm and 20% by weight of cement seems relatively better than that of fly ash. When the waste glass powder content reaches 30%, the mitigation effect is still effective and almost the same as that of fly ash. However, the waste glass powder with particle size larger than 300 μm presents negative mitigation effect on ASR expansion when the replacement rate is larger than 30%. On the other hand, the waste glass powder and calcium hydroxide (CH) further react, and produce more calcium–silicate–hydrate gels, which apparently reduce the amount of CH. Moreover, the increasing content of waste glass powder results in a lower pH value in the pore solu- tion of cementitious composite
    corecore