9 research outputs found

    Filamin-A Regulates Neutrophil Uropod Retraction through RhoA during Chemotaxis

    Get PDF
    Filamin-A (FLNa) has been shown to be a key cross-linker of actin filaments in the leading edge of a motile melanoma cell line, however its role in neutrophils undergoing chemotaxis is unknown. Using a murine transgenic model in which FLNa is selectively deleted in granulocytes, we report that, while neutrophils lacking FLNa show normal polarization and pseudopod extension, they exhibit obvious defects in uropod retraction. This uropod retraction defect was found to be a direct result of reduced FLNa mediated activation of the small GTPase RhoA and myosin mediated actin contraction in the FLNa null cells. This results in a neutrophil recruitment defect in FLNa null mice. The compensatory increase in FLNb levels that was observed in the FLNa null neutrophils may be sufficient to compensate for the lack of FLNa at the leading edge allowing for normal polarization, however this compensation is unable to regulate RhoA activated tail retraction at the rear of the cell

    Structural and Functional Evaluation of C. elegans Filamins FLN-1 and FLN-2

    Get PDF
    Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD) followed by multiple immunoglobulin-like repeats (IgFLN). They function to organize and maintain the actin cytoskeleton, to provide scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and homology modeling to characterize the gene and protein structures of the C. elegans filamin orthologs fln-1 and fln-2. Our results reveal that C. elegans FLN-1 is well conserved at the sequence level to vertebrate filamins, particularly in the ABD and several key IgFLN repeats. Both FLN-1 and the more divergent FLN-2 colocalize with actin in vivo. FLN-2 is poorly conserved, with at least 23 IgFLN repeats interrupted by large regions that appear to be nematode-specific. Our results indicate that many of the key features of vertebrate filamins are preserved in C. elegans FLN-1 and FLN-2, and suggest the nematode may be a very useful model system for further study of filamin function

    Mechanism involved in phagocytosis and killing of Listeria monocytogenes by Acanthamoeba polyphaga

    No full text
    © Springer-Verlag 2009Intra-cellular pathogen, Listeria monocytogenes, is capable of invasion and survival within mammalian cells. However, Acanthamoeba polyphaga trophozoites phagocytose and rapidly degrade Listeria cells. In order to provide more information on amoeba phagocytosis and killing mechanisms, this study used several inhibitor agents known to affect the phagocytosis and killing of bacteria by eukaryotes. Amoebae were pre-treated with mannose, cytochalasin D, wortmannin, suramin, ammonium chloride, bafilomycin A and monensin followed by co-culture with bacteria. Phagocytosis and killing of bacterial cells by amoeba trophozoites was assessed using plate counting methods and microscopy. The data presented indicates that actin polymerisation and cytoskeletal rearrangement are involved in phagocytosis of L. monocytogenes cells by A. polyphaga trophozoites. Further, both phagosomal acidification and phagosome–lysosome fusion are involved in killing and degradation of L. monocytogenes cells by A. polyphaga. However, the mannose-binding protein receptor does not play an important role in uptake of bacteria by amoeba trophozoites. In conclusion, this data reveals the similar principles of molecular mechanisms used by different types of eukaryotes in uptake and killing of bacteria.Alisha Akya, Andrew Pointon and Connor Thoma
    corecore