10 research outputs found

    Evasion of IFN-Îł Signaling by Francisella novicida Is Dependent upon Francisella Outer Membrane Protein C

    Get PDF
    Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918.The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO) mice, including MHC I, MHC II, and µmT (B cell deficient), but not in IFN-γ or IFN-γR KO mice was observed. Primary bone marrow derived macrophages (BMDM) prepared from C57BL/6 mice treated with rIFN-γ exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-γR KO macrophages showed no IFN-γ-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-γ treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-γ. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed.F. novicida FopC protein facilitates evasion of IFN-γ-mediated immune defense(s) by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity) facilitating the activity and localization of acid phosphatases and other F. novicida cell components

    Actinobacteria and Myxobacteria-Two of the Most Important Bacterial Resources for Novel Antibiotics.

    Get PDF
    Bacteria have been by far the most promising resource for antibiotics in the past decades and will in all undoubtedly remain an important resource of innovative bioactive natural products in the future. Actinobacteria have been screened for many years, whereas the Myxobacteria have been underestimated in the past. Even though Actinobacteria belong to the Gram-positive and Myxobacteria to the Gram-negative bacteria both groups have a number of similar characters, as they both have huge genomes with in some cases more than 10kB and a high GC content and they both can differentiate and have often cell cycles including the formation of spores. Actinobacteria have been used for the antibiotic research for many years, hence it is often discussed whether this resource has now been exhaustively exploited but most of the screening programs from pharmaceutical companies were basing on the cultivation mainly of members of the genus Streptomyces or Streptomyces like strains (e.g., some Saccharopolyspora, Amycolatopsis or Actinomadura species) by use of standard methods so that many of the so called "neglected" Actinobacteria were overlooked the whole time. The present review gives an overview on the state of the art regarding new bioactive compounds with a focus on the marine habitats. Furthermore, the evaluation of Myxobacteria in our ongoing search for novel anti-infectives is highlighted

    DNA vaccines: ready for prime time?

    No full text
    corecore