14 research outputs found

    Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    No full text
    The elastic modulus of cellulose I beta in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive force field was used that explicitly describes hydrogen bond, coulombic and van der Waals interactions, allowing each contribution to the inter- and intra-molecular forces to be analyzed as a function of crystallographic direction. The uniform deformation studies showed that the forces dominating elastic behavior differed in the axial and transverse directions because of the relationship between the direction of the applied strain and the hydrogen bonding planes. Simulations of nanoscale indentation were then introduced to model the interaction between a hemispherical indenter with the surface of a cellulose I beta rod. The role of indenter size, loading force and indentation speed on the transverse elastic modulus was studied and, for optimized parameters, the results found to be in good agreement with experimentally-measured transverse elastic modulus for individual cellulose crystals

    Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus

    No full text
    Abstract Hygroscopic behavior is an inherent characteristic of nanocellulose which strongly affects its applications. In this study, the water vapor sorption behavior of four nanocellulose samples, such as cellulose nanocrystals and nanofibers with cellulose I and II structures (cellulose nanocrystals (CNC) I, CNC II, cellulose nanofibers (CNF) I, and CNF II) were studied by dynamic vapor sorption. The highly reproducible data including the running time, real-time sample mass, target relative humidity (RH), actual RH, and isotherm temperature were recorded during the sorption process. In analyzing these data, significant differences in the total running time, equilibrium moisture content, sorption hysteresis and sorption kinetics between these four nanocellulose samples were confirmed. It was important to note that CNC I, CNC II, CNF I, and CNF II had equilibrium moisture contents of 21.4, 28.6, 33.2, and 38.9%, respectively, at a RH of 95%. Then, the sorption kinetics behavior was accurately described by using the parallel exponential kinetics (PEK) model. Furthermore, the Kelvin-Voigt model was introduced to interpret the PEK behavior and calculate the modulus of these four nanocellulose samples

    Understanding nanocellulose chirality and structure–properties relationship at the single fibril level

    No full text
    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement
    corecore