80 research outputs found

    Common marmoset (Callithrix jacchus) personality, subjective well-being, hair cortisol level and AVPR1a, OPRM1, and DAT genotypes

    Get PDF
    We studied personality, subjective well-being, and hair cortisol level, in common marmosets Callithrix jacchus, a small, cooperatively breeding New World monkey, by examining their associations with one another and genotypes. Subjects were 68 males and 9 females that lived in the RIKEN Center for Life Science Technologies. Personality and subjective well-being were assessed by keeper ratings on two questionnaires, hair samples were obtained to assay cortisol level and buccal swabs were used to assess AVPR1a, OPRM1 and DAT genotypes. Three personality domains—Dominance, Sociability, and Neuroticism—were identified. Consistent with findings in other species, Sociability and Neuroticism were related to higher and lower subjective well-being, respectively. Sociability was also associated with higher hair cortisol levels. The personality domains and hair cortisol levels were heritable and associated with genotypes: the short form of AVPR1a was associated with lower Neuroticism and the AA genotype of the A111T SNP of OPRM1 was related to lower Dominance, lower Neuroticism, and higher hair cortisol level. Some genetic associations were not in directions that one would expect given findings in other species. These findings provide insights into the proximate and ultimate bases of personality in common marmosets, other primates and humans

    Evaluating Ortholog Prediction Algorithms in a Yeast Model Clade

    Get PDF
    RSD, respectively, so that they can predict orthologs across multiple taxa) against a set of 2,723 groups of high-quality curated orthologs from 6 Saccharomycete yeasts in the Yeast Gene Order Browser. of all algorithms dramatically increased in these traps.) for evolutionary and functional genomics studies where the objective is the accurate inference of single-copy orthologs (e.g., molecular phylogenetics), but that all algorithms fail to accurately predict orthologs when paralogy is rampant

    Genomic, Proteomic and Physiological Characterization of a T5-like Bacteriophage for Control of Shiga Toxin-Producing Escherichia coli O157:H7

    Get PDF
    Despite multiple control measures, Escherichia coli O157:H7 (STEC O157:H7) continues to be responsible for many food borne outbreaks in North America and elsewhere. Bacteriophage therapy may prove useful for controlling this pathogen in the host, their environment and food. Bacteriophage vB_EcoS_AKFV33 (AKFV33), a T5-like phage of Siphoviridae lysed common phage types of STEC O157:H7 and not non-O157 E. coli. Moreover, STEC O157:H7 isolated from the same feedlot pen from which the phage was obtained, were highly susceptible to AKFV33. Adsorption rate constant and burst size were estimated to be 9.31×10−9 ml/min and 350 PFU/infected cell, respectively. The genome of AKVF33 was 108,853 bp (38.95% G+C), containing 160 open reading frames (ORFs), 22 tRNA genes and 32 strong promoters recognized by host RNA polymerase. Of 12 ORFs without homologues to T5-like phages, 7 predicted novel proteins while others exhibited low identity (<60%) to proteins in the National Centre for Biotechnology Information database. AKVF33 also lacked the L-shaped tail fiber protein typical of T5, but was predicted to have tail fibers comprised of 2 novel proteins with low identity (37–41%) to tail fibers of E. coli phage phiEco32 of Podoviridae, a putative side tail fiber protein of a prophage from E. coli IAI39 and a conserved domain protein of E. coli MS196-1. The receptor-binding tail protein (pb5) shared an overall identify of 29–72% to that of other T5-like phages, with no region coding for more than 6 amino acids in common. Proteomic analysis identified 4 structural proteins corresponding to the capsid, major tail, tail fiber and pore-forming tail tip (pb2). The genome of AKFV33 lacked regions coding for known virulence factors, integration-related proteins or antibiotic resistance determinants. Phage AKFV33 is a unique, highly lytic STEC O157:H7-specific T5-like phage that may have considerable potential as a pre- and post-harvest biocontrol agent

    Immunity against Ixodes scapularis Salivary Proteins Expressed within 24 Hours of Attachment Thwarts Tick Feeding and Impairs Borrelia Transmission

    Get PDF
    In North America, the black-legged tick, Ixodes scapularis, an obligate haematophagus arthropod, is a vector of several human pathogens including Borrelia burgdorferi, the Lyme disease agent. In this report, we show that the tick salivary gland transcriptome and proteome is dynamic and changes during the process of engorgement. We demonstrate, using a guinea pig model of I. scapularis feeding and B. burgdorferi transmission, that immunity directed against salivary proteins expressed in the first 24 h of tick attachment — and not later — is sufficient to evoke all the hallmarks of acquired tick-immunity, to thwart tick feeding and also to impair Borrelia transmission. Defining this subset of proteins will promote a mechanistic understanding of novel I. scapularis proteins critical for the initiation of tick feeding and for Borrelia transmission

    The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli

    Get PDF
    Background: Escherichia coli is a model prokaryote, an important pathogen, and a key organism for industrial biotechnology. E. coli W (ATCC 9637), one of four strains designated as safe for laboratory purposes, has not been sequenced. E. coli W is a fast-growing strain and is the only safe strain that can utilize sucrose as a carbon source. Lifecycle analysis has demonstrated that sucrose from sugarcane is a preferred carbon source for industrial bioprocesses

    Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach

    Full text link
    corecore