879 research outputs found
The potential spread of highly pathogenic avian influenza virus via dynamic contacts between poultry premises in Great Britain
Background: Highly pathogenic avian influenza (HPAI) viruses have had devastating effects on poultry industries worldwide, and there is concern about the potential for HPAI outbreaks in the poultry industry in Great Britain (GB). Critical to the potential for HPAI to spread between poultry premises are the connections made between farms by movements related to human activity. Movement records of catching teams and slaughterhouse vehicles were obtained from a large catching company, and these data were used in a simulation model of HPAI spread between farms serviced by the catching company, and surrounding (geographic) areas. The spread of HPAI through real-time movements was modelled, with the addition of spread via company personnel and local transmission. Results: The model predicted that although large outbreaks are rare, they may occur, with long distances between infected premises. Final outbreak size was most sensitive to the probability of spread via slaughterhouse-linked movements whereas the probability of onward spread beyond an index premises was most sensitive to the frequency of company personnel movements. Conclusions: Results obtained from this study show that, whilst there is the possibility that HPAI virus will jump from one cluster of farms to another, movements made by catching teams connected fewer poultry premises in an outbreak situation than slaughterhouses and company personnel. The potential connection of a large number of infected farms, however, highlights the importance of retaining up-to-date data on poultry premises so that control measures can be effectively prioritised in an outbreak situatio
Livestock trade network: potential for disease transmission and implications for risk-based surveillance on the island of Mayotte
The island of Mayotte is a department of France, an outermost region of the European Union located in the Indian Ocean between Madagascar and the coast of Eastern Africa. Due to its close connection to the African mainland and neighbouring islands, the island is under constant threat of introduction of infectious diseases of both human and animal origin. Here, using social network analysis and mathematical modelling, we assessed potential implications of livestock movements between communes in Mayotte for risk-based surveillance. Our analyses showed that communes in the central region of Mayotte acted as a hub in the livestock movement network. The majority of livestock movements occurred between communes in the central region and from communes in the central region to those in the outer region. Also, communes in the central region were more likely to be infected earlier than those in the outer region when the spread of an exotic infectious disease was simulated on the livestock movement network. The findings of this study, therefore, suggest that communes in the central region would play a major role in the spread of infectious diseases via livestock movements, which needs to be considered in the design of risk-based surveillance systems in Mayotte
Understanding disease control: influence of epidemiological and economic factors
We present a local spread model of disease transmission on a regular network
and compare different control options ranging from treating the whole
population to local control in a well-defined neighborhood of an infectious
individual. Comparison is based on a total cost of epidemic, including cost of
palliative treatment of ill individuals and preventive cost aimed at
vaccination or culling of susceptible individuals. Disease is characterized by
pre- symptomatic phase which makes detection and control difficult. Three
general strategies emerge, global preventive treatment, local treatment within
a neighborhood of certain size and only palliative treatment with no
prevention. The choice between the strategies depends on relative costs of
palliative and preventive treatment. The details of the local strategy and in
particular the size of the optimal treatment neighborhood weakly depends on
disease infectivity but strongly depends on other epidemiological factors. The
required extend of prevention is proportional to the size of the infection
neighborhood, but this relationship depends on time till detection and time
till treatment in a non-nonlinear (power) law. In addition, we show that the
optimal size of control neighborhood is highly sensitive to the relative cost,
particularly for inefficient detection and control application. These results
have important consequences for design of prevention strategies aiming at
emerging diseases for which parameters are not known in advance
Exploring pig trade patterns to inform the design of risk-based disease surveillance and control strategies
An understanding of the patterns of animal contact networks provides essential information for the design of risk-based animal disease surveillance and control strategies. This study characterises pig movements throughout England and Wales between 2009 and 2013 with a view to characterising spatial and temporal patterns, network topology and trade communities. Data were extracted from the Animal and Plant Health Agency (APHA)’s RADAR (Rapid Analysis and Detection of Animal-related Risks) database, and analysed using descriptive and network approaches. A total of 61,937,855 pigs were moved through 872,493 movements of batches in England and Wales during the 5-year study period. Results show that the network exhibited scale-free and small-world topologies, indicating the potential for diseases to quickly spread within the pig industry. The findings also provide suggestions for how risk-based surveillance strategies could be optimised in the country by taking account of highly connected holdings, geographical regions and time periods with the greatest number of movements and pigs moved, as these are likely to be at higher risk for disease introduction. This study is also the first attempt to identify trade communities in the country, information which could be used to facilitate the pig trade and maintain disease-free status across the country in the event of an outbreak
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
A large-scale study of a poultry trading network in Bangladesh: implications for control and surveillance of avian influenza viruses
Since its first report in 2007, avian influenza (AI) has been endemic in Bangladesh. While live poultry marketing is widespread throughout the country and known to influence AI dissemination and persistence, trading patterns have not been described. The aim of this study is to assess poultry trading practices and features of the poultry trading networks which could promote AI spread, and their potential implications for disease control and surveillance. Data on poultry trading practices was collected from 849 poultry traders during a cross-sectional survey in 138 live bird markets (LBMs) across 17 different districts of Bangladesh. The quantity and origins of traded poultry were assessed for each poultry type in surveyed LBMs. The network of contacts between farms and LBMs resulting from commercial movements of live poultry was constructed to assess its connectivity and to identify the key premises influencing it
Controlling epidemic spread by social distancing: Do it well or not at all
BACKGROUND: Existing epidemiological models have largely tended to neglect the impact of individual behaviour on the dynamics of diseases. However, awareness of the presence of illness can cause people to change their behaviour by, for example, staying at home and avoiding social contacts. Such changes can be used to control epidemics but they exact an economic cost. Our aim is to study the costs and benefits of using individual-based social distancing undertaken by healthy individuals as a form of control.METHODS: Our model is a standard SIR model superimposed on a spatial network, without and with addition of small-world interactions. Disease spread is controlled by allowing susceptible individuals to temporarily reduce their social contacts in response to the presence of infection within their local neighbourhood. We ascribe an economic cost to the loss of social contacts, and weigh this against the economic benefit gained by reducing the impact of the epidemic. We study the sensitivity of the results to two key parameters, the individuals' attitude to risk and the size of the awareness neighbourhood.RESULTS: Depending on the characteristics of the epidemic and on the relative economic importance of making contacts versus avoiding infection, the optimal control is one of two extremes: either to adopt a highly cautious control, thereby suppressing the epidemic quickly by drastically reducing contacts as soon as disease is detected; or else to forego control and allow the epidemic to run its course. The worst outcome arises when control is attempted, but not cautiously enough to cause the epidemic to be suppressed. The next main result comes from comparing the size of the neighbourhood of which individuals are aware to that of the neighbourhood within which transmission can occur. The control works best when these sizes match and is particularly ineffective when the awareness neighbourhood is smaller than the infection neighbourhood. The results are robust with respect to inclusion of long-range, small-world links which destroy the spatial structure, regardless of whether individuals can or cannot control them. However, addition of many non-local links eventually makes control ineffective.CONCLUSIONS: These results have implications for the design of control strategies using social distancing: a control that is too weak or based upon inaccurate knowledge, may give a worse outcome than doing nothing
Quantifying the Risk of Localised Animal Movement Bans for Foot-and-Mouth Disease
The maintenance of disease-free status from Foot-and-Mouth Disease is of significant socio-economic importance to countries such as the UK. The imposition of bans on the movement of susceptible livestock following the discovery of an outbreak is deemed necessary to prevent the spread of what is a highly contagious disease, but has a significant economic impact on the agricultural community in itself. Here we consider the risk of applying movement restrictions only in localised zones around outbreaks in order to help evaluate how quickly nation-wide restrictions could be lifted after notification. We show, with reference to the 2001 and 2007 UK outbreaks, that it would be practical to implement such a policy provided the basic reproduction ratio of known infected premises can be estimated. It is ultimately up to policy makers and stakeholders to determine the acceptable level of risk, involving a cost benefit analysis of the potential outcomes, but quantifying the risk of spread from different sized zones is a prerequisite for this. The approach outlined is relevant to the determination of control zones and vaccination policies and has the potential to be applied to future outbreaks of other diseases
Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)
Bovine TB is a major problem for the agricultural industry in several
countries. TB can be contracted and spread by species other than cattle and
this can cause a problem for disease control. In the UK and Ireland, badgers
are a recognised reservoir of infection and there has been substantial
discussion about potential control strategies. We present a coupling of
individual based models of bovine TB in badgers and cattle, which aims to
capture the key details of the natural history of the disease and of both
species at approximately county scale. The model is spatially explicit it
follows a very large number of cattle and badgers on a different grid size for
each species and includes also winter housing. We show that the model can
replicate the reported dynamics of both cattle and badger populations as well
as the increasing prevalence of the disease in cattle. Parameter space used as
input in simulations was swept out using Latin hypercube sampling and
sensitivity analysis to model outputs was conducted using mixed effect models.
By exploring a large and computationally intensive parameter space we show that
of the available control strategies it is the frequency of TB testing and
whether or not winter housing is practised that have the most significant
effects on the number of infected cattle, with the effect of winter housing
becoming stronger as farm size increases. Whether badgers were culled or not
explained about 5%, while the accuracy of the test employed to detect infected
cattle explained less than 3% of the variance in the number of infected cattle
- …