966 research outputs found
Gamma-rays from millisecond pulsars in Globular Clusters
Globular clusters (GCs) with their ages of the order of several billion years
contain many final products of evolution of stars such as: neutron stars, white
dwarfs and probably also black holes. These compact objects can be at present
responsible for the acceleration of particles to relativistic energies.
Therefore, gamma-ray emission is expected from GCs as a result of radiation
processes occurring either in the inner magnetosperes of millisecond pulsars or
in the vicinity of accreting neutron stars and white dwarfs or as a result of
interaction of particles leaving the compact objects with the strong radiation
field within the GC. Recently, GeV gamma-ray emission has been detected from
several GCs by the new satellite observatory Fermi. Also Cherenkov telescopes
reported interesting upper limits at the TeV energies which start to constrain
the content of GCs. We review the results of these gamma-ray observations in
the context of recent scenarios for their origin.Comment: 20 pages, 9 figures, will be published in Astrophysics and Space
Science Series (Springer), eds. N. Rea and D.F. Torre
Analysis of factors influencing the ultrasonic fetal weight estimation
Objective: The aim of our study was the evaluation of sonographic fetal weight estimation taking into consideration 9 of the most important factors of influence on the precision of the estimation. Methods: We analyzed 820 singleton pregnancies from 22 to 42 weeks of gestational age. We evaluated 9 different factors that potentially influence the precision of sonographic weight estimation ( time interval between estimation and delivery, experts vs. less experienced investigator, fetal gender, gestational age, fetal weight, maternal BMI, amniotic fluid index, presentation of the fetus, location of the placenta). Finally, we compared the results of the fetal weight estimation of the fetuses with poor scanning conditions to those presenting good scanning conditions. Results: Of the 9 evaluated factors that may influence accuracy of fetal weight estimation, only a short interval between sonographic weight estimation and delivery (0-7 vs. 8-14 days) had a statistically significant impact. Conclusion: Of all known factors of influence, only a time interval of more than 7 days between estimation and delivery had a negative impact on the estimation
Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species
The Formation of the First Massive Black Holes
Supermassive black holes (SMBHs) are common in local galactic nuclei, and
SMBHs as massive as several billion solar masses already exist at redshift z=6.
These earliest SMBHs may grow by the combination of radiation-pressure-limited
accretion and mergers of stellar-mass seed BHs, left behind by the first
generation of metal-free stars, or may be formed by more rapid direct collapse
of gas in rare special environments where dense gas can accumulate without
first fragmenting into stars. This chapter offers a review of these two
competing scenarios, as well as some more exotic alternative ideas. It also
briefly discusses how the different models may be distinguished in the future
by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First
Galaxies - Theoretical Predictions and Observational Clues", Springer
Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B.
Mobasher, in pres
The effect of low temperature and low light intensity on nutrient removal from municipal wastewater by purple phototrophic bacteria (PPB)
There has been increased interest in alternative wastewater treatment systems to improve nutrient recovery while achieving acceptable TCOD, TN, and TP discharge limits. Purple phototrophic bacteria (PPB) have a high potential for simultaneous nutrient removal and recovery from wastewater. This study evaluated the PPB performance and its growth at different operating conditions with a focus on HRT and light optimization using a continuous-flow membrane photobioreactor (PHB). Furthermore, the effect of low temperature on PPB performance was assessed to evaluate the PPBâs application in cold-climate regions. In order to evaluate PPB performance, TCOD, TN, and TP removal efficiencies and Monod kinetic parameters were analyzed at different HRTs (36, 18, and 9 h), at temperatures of 22°C and 11°C and infrared (IR) light intensities of 50, 3, and 1.4 Wm-2. The results indicated that low temperature had no detrimental impact on PPBâs performance. The photobioreactor (PHB) with cold-enriched PPB has a high potential to treat municipal wastewater with effluent concentrations below target limits (TCODË 50mgL-1, TNË10 mgL-1, and TPË1 mgL-1). Monod kinetic parameters Ks, K, Y, and Kd were estimated at 20-29 mgCODL-1, 1.6-1.9 mgCOD(mgVSS.d)-1, 0.47 mgVSS mgCOD-1, and 0.07-0.08 d-1 at temperatures of 11°C-22°C respectively. The results of the steady-state mass balances showed TCOD, TN, and TP recoveries of 80%-86%, which reflected PPBâs substrate and nutrient assimilation.
Previous studies utilized high light intensities (Ë 50 Wm-2) to provide PPB with the maximum energy required for its growth. In order to enable the PPB technology as a practical approach in municipal wastewater treatment, light intensity must be optimized. Based on the literature, there is no study on PPB performance at low light intensities using a continuous-flow membrane photobioreactor. The effect of low light intensities of 3, and 1.4 Wm-2 on PPB performance was addressed in this study. The results indicated that PPB at a light intensity as low as 1.4 Wm-2 were able to treat municipal wastewater with effluent concentrations below above-mentioned target limits. Light intensity (1-50 Wm-2) had no detrimental impact on PPB performance and Monod kinetic parameters. This study showed that the optimized light intensity required for municipal wastewater treatment with PPB is significantly lower than previously indicated in the literature. The energy consumptions attributed to PHBâs illumination of 3, and 1.4 Wm-2 were determined to be 1.44, and 0.67 kWh/m3 which is significantly lower than previous studies (Ë 24 kWh/m3)
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV
The azimuthal anisotropy of charged particles in PbPb collisions at
nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS
detector at the LHC over an extended transverse momentum (pt) range up to
approximately 60 GeV. The data cover both the low-pt region associated with
hydrodynamic flow phenomena and the high-pt region where the anisotropies may
reflect the path-length dependence of parton energy loss in the created medium.
The anisotropy parameter (v2) of the particles is extracted by correlating
charged tracks with respect to the event-plane reconstructed by using the
energy deposited in forward-angle calorimeters. For the six bins of collision
centrality studied, spanning the range of 0-60% most-central events, the
observed v2 values are found to first increase with pt, reaching a maximum
around pt = 3 GeV, and then to gradually decrease to almost zero, with the
decline persisting up to at least pt = 40 GeV over the full centrality range
measured.Comment: Replaced with published version. Added journal reference and DO
- âŚ