80 research outputs found

    The interleukin (IL)-31/IL-31R axis contributes to tumor growth in human follicular lymphoma

    Get PDF
    Interleukin (IL)-31A binds to an heterodimer composed of IL-31 receptor A (IL-31RA) and Oncostatin M Receptor (OSMR). The IL-31/ IL-31R complex is involved in the pathogenesis of various skin diseases, including cutaneous T-cell lymphoma. No information is available on the relations between the IL-31/IL-31R complex and B-cell lymphoma. Here we have addressed this issue in follicular lymphoma (FL), a prototypic germinal center(GC)-derived B-cell malignancy. IL-31 enhanced primary FL cell proliferation through IL-31R-driven signal transducer and activator of transcription factor 1/3 (STAT1/3), extracellular signal–regulated kinase 1/2 (ERK1/2) and Akt phosphorylation. In contrast, GC B cells did not signal to IL-31 in spite of IL-31R expression. GC B cells expressed predominantly the inhibitory short IL-31RA isoform, whereas FL cells expressed predominantly the long signaling isoform. Moreover, GC B cells lacked expression of other IL-31RA isoforms potentially involved in the signaling pathway. IL-31 protein expression was significantly higher in surface membrane than in cytosol of both FL and GC B cells. IL-31 was detected in plasma membrane microvesicles from both cell types but not released in soluble form in culture supernatants. IL-31 and IL-31RA expression was higher in lymph nodes from FL patients with grade IIIa compared with grade I/II, suggesting a paracrine and/or autocrine role of IL-31/IL-31RA complex in tumor progression through microvesicle shedding

    Lipid Raft-Dependent FcεRI Ubiquitination Regulates Receptor Endocytosis through the Action of Ubiquitin Binding Adaptors

    Get PDF
    The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcepsilonRI) expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcepsilonRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcepsilonRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment

    Source of arachidonic acid release on stimulation of rat basophilic leukemia cells

    No full text
    Triggering of rat basophilic leukemia cells for histamine secretion is accompanied by arachidonic acid release. We studied the source of this arachidonic acid released after IgE or calcium ionophore A23187 stimulation. The 48-hr culture of the cells with [14C]arachidonic acid resulted in labeling of the phospholipids to constant specific activity. After IgE stimulation, 8.8% of the cellular [14C]arachidonate was released; this was predominantly from phosphatidylinositol (PI)/phosphatidylserine (PS) (66.3%), less from phosphatidylethanolamine (PE) (25.9%), and minimally from phosphatidylcholine (PC). In contrast, after ionophore stimulation the cells released 16.4% of cellular [14C]arachidonate, most of this was from PE (55.4%) followed by about equal amounts from PS/PI and PC (24% and 20%, respectively). Therefore, the source of the released arachidonic acid depends on the stimulus. In contrast, the results are different when the cells are cultured for only 2 hr with [14C]arachidonic acid. The label in phospholipids was in PC (44%), PE (38%), and PI/PS (20%); the stimulation of the cells with IgE or ionophore resulted in the release of the [14C]arachidonate from PC (81% and 96%, respectively). This suggests the presence of several pools of phospholipids that are labeled at different rates and have variable proximity and/or accessibility to the phospholipase(s) enzyme(s) activated during cell secretion
    • …
    corecore