28 research outputs found

    View indexing in relational databases

    No full text

    FTIR ATR study of adsorption of trisiloxanes and hydrocarbon surfactants at hydrophobic solids from aqueous solutions

    No full text
    Kinetics of the integrated absorbance in C−H stretch region for ethoxylated trisiloxane and alkyl polyethoxylate surfactants on low- and highly hydrophobic surfaces has been measured by Fourier-Transform Infrared spectroscopy (FTIR) in the attenuated total reflection (ATR) mode. It has been found that regardless of the surface energy of substrate the absorbance of trisiloxanes continuously increases during the experiment (characteristic time scale is ten minutes), while the absorbance of alkyl polyethoxylate surfactants reaches equilibrium for tens of seconds on low hydrophobic and for a few minutes on the highly hydrophobic surfaces. The continuous growth of absorbance with increasing bulk concentration of surfactants has been detected in the case of trisiloxanes on both substrates even at concentrations above critical wetting concentration; while hydrocarbon surfactants attained the constant values of absorbance at concentrations above critical aggregation concentration. The results for alkyl polyethoxylate surfactants obtained from FTIR-ATR spectra are consistent with the results obtained by other authors used neutron and optical reflectometry. Influence of the length of hydrophilic chains on the value of the absorbance of surfactants has been analyzed. In the case of alkyl polyethoxylate surfactants the absorbance decreases with increasing the length of hydrophilic ethoxy groups. However, in the case of trisiloxane surfactants studied the above trend cannot be clearly traced. Some aspects associated with the relationship between adsorption of trisiloxanes at hydrophobic solid/liquid interfaces and spreading kinetics are discussed
    corecore