7 research outputs found
The sno gene, which encodes a component of the histone deacetylase complex, acts as a tumor suppressor in mice
The Ski and Sno oncoproteins are components of a macromolecular complex containing the co-repressor N-CoR/SMRT, mSin3 and histone deacetylase. This complex has been implicated in the transcriptional repression exerted by a number of repressors including nuclear hormone receptors and Mad. Further more, Ski and Sno negatively regulate transforming growth factor-β (TGF-β) signaling by recruiting this complex to Smads. Here we show that loss of one copy of sno increases susceptibility to tumorigenesis in mice. Mice lacking sno died at an early stage of embryogenesis, and sno was required for blastocyst formation. Heterozygous (sno(+/–)) mice developed spontaneous lymphomas at a low frequency and showed an increased level of tumor formation relative to wild-type mice when challenged with a chemical carcinogen. sno(+/–) embryonic fibroblasts had an increased proliferative capacity and the introduction of activated Ki-ras into these cells resulted in neoplastic transformation. The B cells, T cells and embryonic fibroblasts of sno(+/–) mice had a decreased sensitivity to apoptosis or cell cycle arrest. These findings demonstrate that sno acts as a tumor suppressor at least in some types of cells
Osteosarcoma Development and Stem Cell Differentiation
Osteosarcoma is the most common nonhematologic malignancy of bone in children and adults. The peak incidence occurs in the second decade of life, with a smaller peak after age 50. Osteosarcoma typically arises around the growth plate of long bones. Most osteosarcoma tumors are of high grade and tend to develop pulmonary metastases. Despite clinical improvements, patients with metastatic or recurrent diseases have a poor prognosis. Here, we reviewed the current understanding of human osteosarcoma, with an emphasis on potential links between defective osteogenic differentiation and bone tumorigenesis. Existing data indicate osteosarcoma tumors display a broad range of genetic and molecular alterations, including the gains, losses, or arrangements of chromosomal regions, inactivation of tumor suppressor genes, and the deregulation of major signaling pathways. However, except for p53 and/or RB mutations, most alterations are not constantly detected in the majority of osteosarcoma tumors. With a rapid expansion of our knowledge about stem cell biology, emerging evidence suggests osteosarcoma should be regarded as a differentiation disease caused by genetic and epigenetic changes that interrupt osteoblast differentiation from mesenchymal stem cells. Understanding the molecular pathogenesis of human osteosarcoma could ultimately lead to the development of diagnostic and prognostic markers, as well as targeted therapeutics for osteosarcoma patients