176 research outputs found
Design with use of 3D printing technology
[EN] Dynamic development of 3D printing technology contributes to its wide applicability. FDM (Fused Deposition Method) is the most known and popular 3D printing method due to its availability and affordability. It is also usable in design of technical objects-to verify design concepts with use of 3D printed prototypes. The prototypes are produced at lower cost and shorter time comparing to other manufacturing methods and might be used for a number of purposes depending on designed object's features they reflect. In the article, usability of 3D printing method FDM for designing of technical objects is verified based on sample functional prototypes. Methodology applied to develop these prototypes and their stand tests are covered. General conclusion is that 3D printed prototypes manufactured with FDM method proved to be useful for verifying new concepts within design processes carried out in KOMAG.Rozmus, M.; Dobrzaniecki, P.; Siegmund, M.; Gómez Herrero, JA. (2020). Design with use of 3D printing technology. Management Systems in Production Engineering. 28(4):283-291. https://doi.org/10.2478/mspe-2020-0040S283291284[1] A. Alafaghani, A. Qattawi. “Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method.” Journal of Manufacturing Processes, vol. 36, pp. 164-174, Dec. 2018[2] D. Bałaga, M. Kalita, M. Siegmund. „Use of 3D additive manufacturing technology for rapid prototyping of spraying nozzles”. Mining Machines, vol. 3 pp. 3-13, Sep. 2017.[3] C. Baletti, M. Ballarin, F. Guerra. “3D printing: State of the art and future perspectives.” Journal of Cultural Heritage, vol. 26, pp. 172-182, Mar. 2017[4] C. Buchanan, L. Gardner. “Metal 3D printing in construction: a review of methods research, applications, opportunities and challenges.” Engineering Structures, vol. 180, pp. 332-348, Feb. 2019.[5] J. M. Chacon, M. A. Caminero, E. Garcia-Plaza, P. J. Nunez. “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection.” Materials and Design, vol. 124, pp. 143-157, Jun. 2017.[6] P. Dobrzaniecki, M. Kalita. „Possibility of using the neodymium magnets in machines and equipment clutches”, Mining Machines, vol. 4, pp. 27-38, Dec. 2018.[7] S. Ford, T. Minshall. “Invited review article: Where and how 3D printing is used in teaching and education.” Additive Manufacturing, vol. 25, pp. 131-150, Jan. 2019.[8] A.W. Gebisa, H. G. Lemu. “Influence of 3D Printing FDM Process Parameters on Tensile Property of ULTEM 9085.”, Procedia Manufacturing, vol. 30, pp. 331-338, Jan. 2019.[9] A. Gisario, M. Kazarian, F. Martina, M. Mehrpouya. “Metal additive manufacturing in the commercial aviation industry: A review.” Journal of Manufacturing Systems, vol. 53, pp. 124-149, Oct. 2019.[10] T.W. Kerekes, H. Lim, W. Y. Joe, G. J. Yun. “Characterization of process-deformation/damage property relationship for fused deposition modelling (FDM) 3D-printed specimens.” Additive Manufacturing vol. 25, pp. 532-544, Dec. 2018[11] K.G. Mostafa, C. Montemagno, A.J. Qureshi. “Strength to cost ratio analysis of FDM Nylon 12 3D Printed Parts.” Procedia Manufacturing, vol. 26, pp. 753-762, 2018.[12] T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui. “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges.” Composites Part B: Engineering, vol. 43, pp. 172-196, Jun. 2018.[13] D. Prostański. “Dust control with use of air-water spraying system.” Archives of Mining Sciences, vol. 57(4), pp. 975-990, Dec. 2012.[14] Y. Qian et al. “A Review of 3D Printing Technology for Medical Applications.” Engineering, vol. 4(5), pp. 729-742, Oct. 2018.[15] N. Shahrubudin, T.C. Lee, R. Ramlan. “An Overview on 3D Printing Technology: Technological, Materials, and Applications.” Procedia Manufacturing, vol. 35, pp. 1286-1296, 2019.[16] A. Sheoran, H.Kumar. “Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research.” Materials Today: Proceedings, vol. 21, pp. 1659-1672. Dec. 2019.[17] M. Siegmund, D. Bałaga, M. Kalita. „Testing the parameters of spraying stream form fine-drops nozzles”. Mining Machines, vol. 3 pp. 3-13, Sep. 2018.[18] S. Singh, S. Ramakrishna, R. Singh. “Material issues in additive manufacturing; a review.” Journal of Manufacturing Processes, vol. 25, pp. 185-200, Dec. 2016.[19] M. Snopczyński, J. Kotliński, I. Musiałek. “Testing of mechanical properties of materials used in FDM technology.” Mechanik, vol. 4, pp. 285-287, Apr. 2019.[20] M. Upadhyay, T. Sivarupan, M.E. Mansori. “3D printing for rapid sand casting – A review.” Journal of Manufacturing Processes, vol. 29, pp. 211-220, Oct. 2017.[21] P. Wang, B. Zou, H. Xiao, S. Ding, C. Huang. “Effects of printing parameters of fused deposition modelling on mechanical properties, surface quality, and microstructure of PEEK.” Journal of Materials Processing Technology, vol. 271, pp. 62-74, Sep. 2019
Mechanical properties of diamond–TiB2 composites
The presented paper characterizes the basic mechanical and physical properties of sintered
diamond-titanium diboride (submicro) and diamond-titanium diboride (nano) composites. The
effect of reduction of powder size from the submicron scale to the nano scale of the ceramic
bonding phase (TiB₂) in diamond composites on selected mechanical properties (Young’s modulus,
Vickers hardness, fracture toughness, coefficient of friction) has been reported. Composites were
prepared from initial powders of diamond (MDA36, Element Six) with addition of 10 mass %
submicron TiB₂ (H.C. Starck F) and 10 mass % nanopowder TiB₂ (American Elements). Compacts
were sintered at pressure 8±0,5 GPa and 2233±50 K using the high pressure-high temperature
Bridgman type apparatus. These investigations allow the possibility of using this materials to be
enhacced as ceramic tool materials, in particular as burnishing tools.Наведені основні механічні та фізичні властивості спечених композитів на основі
алмазу з додаванням субмікро- та нано-дибориду титану. Вивчено вплив розміру частинок
порошку від субмікронного до нано-рівня в керамічній (TiB₂) складовій алмазних композитів
на їх механічні властивості (модуль Юнга, твердість за Віккерсом, в'язкість руйнування,
коефіцієнт тертя). Композити були отримані з вихідних порошків алмазу (MDA36, Element
Six) з додаванням 10 мас. % субмікронного TiB₂ (HC Starck F) або 10 мас. % нанопорошку
TiB₂ (American Elements). Зразки спечені при тиску 8±0,5 ГПа і температурі 2233±50 К в
апараті високого тиску типу тороїд. Результати досліджень вказують на можливість
використання одержаних композитів як інструментальних матеріалів підвищеної якості,
зокрема в інструментах для вигладжування.Приведены основные механические и физические свойства спеченных композитов на
основе алмаза с добавками субмикро- и нано-диборида титана. Изучено влияние размера
частиц порошка от субмикронного до нано-уровня в керамической (TiB₂) составляющей
алмазных композитов на их механические свойства (модуль Юнга, твердость по Виккерсу,
вязкость разрушения, коэффициент трения). Композиты были получены из исходных
порошков алмаза (MDA36, Element Six) с добавлением 10 масс. % субмикронного TiB₂ (HC
Starck F) или 10 масс. % нанопорошка TiB₂ (American Elements). Образцы были спечены при
давлении 8±0,5 ГПа и температуре 2233±50 К в аппарате высокого давления типа тороид.
Результаты исследований указывают на возможность использования полученных
композитов в качестве улучшенных инструментальных материалов, в частности в
выглаживающих инструментах
Harmonics generation in electron-ion collisions in a short laser pulse
Anomalously high generation efficiency of coherent higher field-harmonics in
collisions between {\em oppositely charged particles} in the field of
femtosecond lasers is predicted. This is based on rigorous numerical solutions
of a quantum kinetic equation for dense laser plasmas which overcomes
limitations of previous investigations.Comment: 4 pages, 4 eps-figures include
Is it possible to separate the graft-versus-leukemia (GVL) effect against B cell acute lymphoblastic leukemia from graft-versus-host disease (GVHD) after hematopoietic cell transplant?
Hematopoietic cell transplant is a curative therapy for many pediatric patients with high risk acute lymphoblastic leukemia. Its therapeutic mechanism is primarily based on the generation of an alloreactive graft-versus-leukemia effect that can eliminate residual leukemia cells thus preventing relapse. However its efficacy is diminished by the concurrent emergence of harmful graft-versus-host disease disease which affects healthly tissue leading to significant morbidity and mortality. The purpose of this review is to describe the interventions that have been trialed in order to augment the beneficial graft-versus leukemia effect post-hematopoietic cell transplant while limiting the harmful consequences of graft-versus-host disease. This includes many emerging and promising strategies such a
Diamond-max ceramics bonding phase composites – phases and microstructure analysis
The possibility for improving the thermal stability of polycrystalline materials based on diamond (PCD) is to reduce the content of cobalt. Diamond compacts without cobalt phases with Ti3₃iC₂ і Cr₂AlC prepared using the method of self-propagating high-temperature synthesis (SHS). The resulting compacts with 20 wt. % of the above phases were exposed to high pressure and temperature in order to further consolidate the structure by sintering. Sintering was performed at 8±0.2 GPa and 1950±50 °C. Phase composition and microstructural study of the original compacts and the composites made by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Одна з можливостей підвищення термостійкості полікристалічних матеріалів на основі алмазу (PCD) полягає в зменшенні вмісту в них кобальту. Алмазні компакти без кобальту з фазами Ti3₃iC₂ і Cr₂AlC отримували з використанням методу само поширюваного високотемпературного синтезу (SHS). Отримані компакти з 20 мас. % зазначених фаз піддавали дії високого тиску і температури з метою подальшої консолідації структури шляхом спікання. Процес спікання здійснювали при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовий склад і мікроструктурні дослідження вихідних компактів і отриманих композитів виконані методами рентгенівської дифрактометрії (XRD) і скануючої електронної мікроскопії (SEM).Одна из возможностей повышения термостойкости поликристаллических материалов на основе алмаза (PCD) заключается в снижении содержания в них кобальта. Алмазные компакты без кобальта с фазами Ti3₃iC₂ и Cr₂AlC получали с использованием метода самораспространяющегося высокотемпературного синтеза (SHS). Полученные компакты с 20 % по мас. указанных фаз подвергали воздействию высокого давления и температуры с целью дальнейшей консолидации структуры путем спекания. Процесс спекания осуществляли при 8 ± 0,2 ГПа и 1950 ± 50 °С. Фазовый состав и микроструктурные исследования исходных компактов и полученных композитов выполнены методами рентгеновской дифрактометрии (XRD) и сканирующей электронной микроскопии (SEM)
The effect of long-term impact of elevated temperature on changes in the microstructure of inconel 740H alloy
This paper presents the results of investigations on microstructure changes after the long-term impact of temperature. The microstructure investigations were carried out by light microscopy and scanning electron microscopy. The qualitative and quantitative identification of the existing precipitates was carried out using X-ray phase composition analysis. The effect of elevated temperature on precipitation processes of test material were described. The obtained results of investigations form part of the material characteristics of new-generation alloys, which can be indirectly associated with the stability of functional properties under the simultaneous effect of high temperature and stress
Thomson scattering from high-temperature high-density plasmas revisited
The theory of Thomson scattering from high-temperature high-density plasmas
is revisited from the view point of plasma fluctuation theory. Three subtle
effects are addressed with a unified theory. The first is the correction of the
first order of , where is the particle velocity and is the light
speed, the second is the plasma dielectric effect, and the third is the finite
scattering volume effect. When the plasma density is high, the first effect is
very significant in inferring plasma parameters from the scattering spectra off
electron plasma waves. The second is also be notable but less significant. When
the size of the scattering volume is much larger than the probe wavelength, the
third is negligible.Comment: 16 pages, 2 figures, submitted to Plasma Physics and Controlled
Fusio
21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas
Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}
- …