137 research outputs found
Circular Jacobi Ensembles and deformed Verblunsky coefficients
Using the spectral theory of unitary operators and the theory of orthogonal
polynomials on the unit circle, we propose a simple matrix model for the
following circular analogue of the Jacobi ensemble: c_{\delta,\beta}^{(n)}
\prod_{1\leq k with . If is
a cyclic vector for a unitary matrix , the spectral measure of
the pair is well parameterized by its Verblunsky coefficients
. We introduce here a deformation of these coefficients so that the associated Hessenberg
matrix (called GGT) can be decomposed into a product of elementary reflections parameterized by these coefficients.
If are independent random variables with some
remarkable distributions, then the eigenvalues of the GGT matrix follow the
circular Jacobi distribution above.
These deformed Verblunsky coefficients also allow to prove that, in the
regime with \delta(n)/n \to \dd, the spectral measure
and the empirical spectral distribution weakly converge to an explicit
nontrivial probability measure supported by an arc of the unit circle. We also
prove the large deviations for the empirical spectral distribution.Comment: New section on large deviations for the empirical spectral
distribution, Corrected value for the limiting free energ
Operator-valued spectral measures and large deviations
International audienceWe study large deviation properties of random matricial spectral measures
Modelling of amorphous polymer surfaces in computer simulation
We study surface effects in amorphous polymer systems by means of computer
simulation. In the framework of molecular dynamics, we present two different
methods to prepare such surfaces. {\em Free} surfaces are stabilized solely by
van--der--Waals interactions whereas {\em confined} surfaces emerge in the
presence of repelling plates. The two models are compared in various computer
simulations. For free surfaces, we analyze the migration of end--monomers to
the surface. The buildup of density and pressure profiles from zero to their
bulk values depends on the surface preparation method. In the case of confined
surfaces, we find density and pressure oszillations next to the repelling
plates. We investigate the influence of surfaces on the coordination number, on
the orientation of single bonds, and on polymer end--to--end vectors.
Furthermore, different statistical methods to determine location and width of
the surface region for systems of various chain lengths are discussed and
applied. We introduce a ``height function'' and show that this method allows to
determine average surface profiles only by scanning the outermost layer of
monomers.Comment: 23 pages, 12 figure
A fast Monte Carlo algorithm for studying bottle-brush polymers
Obtaining reliable estimates of the statistical properties of complex
macromolecules by computer simulation is a task that requires high
computational effort as well as the development of highly efficient simulation
algorithms. We present here an algorithm combining local moves, the pivot
algorithm, and an adjustable simulation lattice box for simulating dilute
systems of bottle-brush polymers with a flexible backbone and flexible side
chains under good solvent conditions. Applying this algorithm to the bond
fluctuation model, very precise estimates of the mean square end-to-end
distances and gyration radii of the backbone and side chains are obtained, and
the conformational properties of such a complex macromolecule are studied.
Varying the backbone length (from to ), side chain length
(from N=0 to N=24 or 48), the scaling predictions for the backbone behavior as
well as the side chain behavior are checked. We are also able to give a direct
comparison of the structure factor between experimental data and the simulation
results.Comment: 9 pages, 10 figure
Reactions at polymer interfaces: A Monte Carlo Simulation
Reactions at a strongly segregated interface of a symmetric binary polymer
blend are investigated via Monte Carlo simulations. End functionalized
homopolymers of different species interact at the interface instantaneously and
irreversibly to form diblock copolymers. The simulations, in the framework of
the bond fluctuation model, determine the time dependence of the copolymer
production in the initial and intermediate time regime for small reactant
concentration . The results are compared to
recent theories and simulation data of a simple reaction diffusion model. For
the reactant concentration accessible in the simulation, no linear growth of
the copolymer density is found in the initial regime, and a -law is
observed in the intermediate stage.Comment: to appear in Macromolecule
Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies
It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond
the correlation length characterizing the decay of the density
fluctuations. Summarizing simulation results obtained by means of a variant of
the bond-fluctuation model with finite monomer excluded volume interactions and
topology violating local and global Monte Carlo moves, we show that due to an
interplay of the chain connectivity and the incompressibility constraint, both
static and dynamical correlations arise on distances . These
correlations are scale-free and, surprisingly, do not depend explicitly on the
compressibility of the solution. Both monodisperse and (essentially)
Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
Predicting the seasonal evolution of southern African summer precipitation in the DePreSys3 prediction system
We assess the ability of the DePreSys3 prediction system to predict austral summer precipitation (DJF) over southern Africa, defined as the African continent south of 15°S. DePresys3 is a high resolution prediction system (at a horizontal resolution of ~ 60 km in the atmosphere in mid-latitudes and of the quarter degree in the Ocean) and spans the long period 1959–2016. We find skill in predicting interannual precipitation variability, relative to a long-term trend; the anomaly correlation skill score over southern Africa is greater than 0.45 for the first summer (i.e. lead month 2–4), and 0.37 over Mozambique, Zimbabwe and Zambia for the second summer (i.e. lead month 14–16). The skill is related to the successful prediction of the El-Nino Southern Oscillation (ENSO), and the successful simulation of ENSO teleconnections to southern Africa. However, overall skill is sensitive to the inclusion of strong La-Nina events and also appears to change with forecast epoch. For example, the skill in predicting precipitation over Mozambique is significantly larger for the first summer in the 1990–2016 period, compared to the 1959–1985 period. The difference in skill in predicting interannual precipitation variability over southern Africa in different epochs is consistent with a change in the strength of the observed teleconnections of ENSO. After 1990, and consistent with the increased skill, the observed impact of ENSO appears to strengthen over west Mozambique, in association with changes in ENSO related atmospheric convergence anomalies. However, these apparent changes in teleconnections are not captured by the ensemble-mean predictions using DePreSys3. The changes in the ENSO teleconnection are consistent with a warming over the Indian Ocean and modulation of ENSO properties between the different epochs, but may also be associated with unpredictable atmospheric variability
Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide
The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk
Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology
Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism
- …