34,330 research outputs found
Surveyor ejecta detector model ML 256-1 and 185-1 and Surveyor ejecta detector ground support equipment model ML 260-1 Final engineering report
Engineering analyses on Surveyor lunar dust particle detector instrumentation, and ground support equipmen
Spin projection and spin current density within relativistic electronic transport calculations
A spin projection scheme is presented which allows the decomposition of the
electric conductivity into two different spin channels within fully
relativistic transport calculations that account for the impact
of spin-orbit coupling. This is demonstrated by calculations of the
spin-resolved conductivity of FeCr and CoPt disordered
alloys on the basis of the corresponding Kubo-Greenwood equation implemented
using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA)
band structure method. In addition, results for the residual resistivity of
diluted Ni-based alloys are presented that are compared to theoretical and
experimental ones that rely on Mott's two-current model for spin-polarized
systems. The application of the scheme to deal with the spin-orbit induced spin
Hall effect is discussed in addition
Coherent description of the intrinsic and extrinsic anomalous Hall effect in disordered alloys on an level
A coherent description of the anomalous Hall effect (AHE) is presented that
is applicable to pure as well as disordered alloy systems by treating all
sources of the AHE on equal footing. This is achieved by an implementation of
the Kubo-St\v{r}eda equation using the fully relativistic
Korringa-Kohn-Rostoker (KKR) Green's function method in combination with the
Coherent Potential Approximation (CPA) alloy theory. Applications to the pure
elemental ferromagnets bcc-Fe and fcc-Ni led to results in full accordance with
previous work. For the alloy systems fcc-FePd and
fcc-NiPd very satisfying agreement with experiment could be
achieved for the anomalous Hall conductivity (AHC) over the whole range of
concentration. To interpret these results an extension of the definition for
the intrinsic AHC is suggested. Plotting the corresponding extrinsic AHC versus
the longitudinal conductivity a linear relation is found in the dilute regimes,
that allows a detailed discussion of the role of the skew and side-jump
scattering processes.Comment: * shortened manuscript * slight rewordings * changed line style in
Fig 1 * corrected misprinted S (skewness) factor * merged Fig. 3 with Fig. 1
* new citation introduce
Ab-initio calculation of the Gilbert damping parameter via linear response formalism
A Kubo-Greenwood-like equation for the Gilbert damping parameter is
presented that is based on the linear response formalism. Its implementation
using the fully relativistic Korringa-Kohn-Rostoker (KKR) band structure method
in combination with Coherent Potential Approximation (CPA) alloy theory allows
it to be applied to a wide range of situations. This is demonstrated with
results obtained for the bcc alloy system FeCo as well as for a
series of alloys of permalloy with 5d transition metals.
To account for the thermal displacements of atoms as a scattering mechanism,
an alloy-analogy model is introduced. The corresponding calculations for Ni
correctly describe the rapid change of when small amounts of
substitutional Cu are introduced
Vlasov simulation in multiple spatial dimensions
A long-standing challenge encountered in modeling plasma dynamics is
achieving practical Vlasov equation simulation in multiple spatial dimensions
over large length and time scales. While direct multi-dimension Vlasov
simulation methods using adaptive mesh methods [J. W. Banks et al., Physics of
Plasmas 18, no. 5 (2011): 052102; B. I. Cohen et al., November 10, 2010,
http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142] have recently shown
promising results, in this paper we present an alternative, the Vlasov Multi
Dimensional (VMD) model, that is specifically designed to take advantage of
solution properties in regimes when plasma waves are confined to a narrow cone,
as may be the case for stimulated Raman scatter in large optic f# laser beams.
Perpendicular grid spacing large compared to a Debye length is then possible
without instability, enabling an order 10 decrease in required computational
resources compared to standard particle in cell (PIC) methods in 2D, with
another reduction of that order in 3D. Further advantage compared to PIC
methods accrues in regimes where particle noise is an issue. VMD and PIC
results in a 2D model of localized Langmuir waves are in qualitative agreement
A fiber-optic current sensor for aerospace applications
A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given
Fiber-optic sensors for aerospace electrical measurements: An update
Fiber-optic sensors are being developed for electrical current, voltage, and power measurements in aerospace applications. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. Concentration is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. This paper reports on the development of these sensors, the results of evaluation, improvements now in progress, and the future direction of the work
Teleological Essentialism
Placeholder essentialism is the view that there is a causal essence that holds category members together, though we may not know what the essence is. Sometimes the placeholder can be filled in by scientific essences, such as when we acquire scientific knowledge that the atomic weight of gold is 79. We challenge the view that placeholders are elaborated by scientific essences. On our view, if placeholders are elaborated, they are elaborated Aristotelian essences, a telos. Utilizing the same kinds of experiments used by traditional essentialists—involving superficial change (study 1), transformation of insides (study 2), acquired traits (study 3) and inferences about offspring (study 4)—we find support for the view that essences are elaborated by a telos. And we find evidence (study 5) that teleological essences may generate category judgments
“I wish I’d told them”: a qualitative study examining the unmet psychosexual needs of prostate cancer patients during follow-up after treatment
<b>Objective</b> To gain insight into patients' experiences of follow-up care after treatment for prostate cancer and identify unmet psychosexual needs.<p></p>
<b>Methods</b> Semi-structured interviews were conducted with a purposive sample of 35 patients aged 59-82 from three UK regions. Partners were included in 18 interviews. Data were analyzed using constant comparison. <p></p>
<b>Results</b> (1) Psychosexual problems gained importance over time, (2) men felt they were rarely invited to discuss psychosexual side effects within follow-up appointments and lack of rapport with health care professionals made it difficult to raise problems themselves, (3) problems were sometimes concealed or accepted and professionals' attempts to explore potential difficulties were resisted by some, and (4) older patients were too embarrassed to raise psychosexual concerns as they felt they would be considered 'too old' to be worried about the loss of sexual function.<p></p>
<b>Conclusion</b> Men with prostate cancer, even the very elderly, have psychosexual issues for variable times after diagnosis. These are not currently always addressed at the appropriate time for the patient.Practice implications Assessments of psychosexual problems should take place throughout the follow-up period, and not only at the time of initial treatment. Further research examining greater willingness or reluctance to engage with psychosexual interventions may be particularly helpful in designing future intervention
- …