54 research outputs found
Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea)
The effect of direct chemical defences in plants on the performance of insect herbivores and their natural enemies has received increasing attention over the past 10Â years. However, much less is known about the scale at which this variation is generated and maintained, both within and across populations of the same plant species. This study compares growth and development of the large cabbage butterfly, Pieris brassicae, and its gregarious pupal parasitoid, Pteromalus puparum, on three wild populations [Kimmeridge (KIM), Old Harry (OH) and Winspit (WIN)] and two cultivars [Stonehead (ST), and Cyrus (CYR)] of cabbage, Brassica oleracea. The wild populations originate from the coast of Dorset, UK, but grow in close proximity with one another. Insect performance and chemical profiles were made from every plant used in the experiment. Foliar glucosinolates (GS) concentrations were highest in the wild plants in rank order WINÂ >Â OHÂ >Â KIM, with lower levels found in the cultivars. Caterpillar-damaged leaves in the wild cabbages also had higher GS levels than undamaged leaves. Pupal mass in P. brassicae varied significantly among populations of B. oleracea. Moreover, development time in the host and parasitoid were correlated, even though these stages are temporally separated. Parasitoid adult dry mass closely approximated the development of its host. Multivariate statistics revealed a correlation between pupal mass and development time of P. brassicae and foliar GS chemistry, of which levels of neoglucobrassicin appeared to be the most important. Our results show that there is considerable variation in quantitative aspects of defensive chemistry in wild cabbage plants that is maintained at very small spatial scales in nature. Moreover, the performance of the herbivore and its parasitoid were both affected by differences in plant quality
Impact of Brassica juncea biofumigation on viability of propagules of pernicious weed species
Biofumigation may be a promising tool for depletion of persistent weed seedbanks/bud banks. This technique is based on the incorporation of chopped glucosinolate-rich plant biomass into the soil, upon which isothiocyanates with herbicidal properties are released. To gain acceptance by farmers and foster its implementation, the biofumigation process should be further optimised. This study elucidated the impact of biological (species), technical (burial depth, ground cover) and pedohydrological (temperature and moisture content) factors on efficacy of Brassica juncea biofumigation under (semi-)natural conditions. In a first experiment (field experiment), seeds and vegetative propagules of various weed species were buried at different depths and exposed to different doses of fresh fine-chopped B. juncea biomass in the presence or absence of a plastic ground cover. In a second experiment (container experiment), buried seeds of ten species were subjected to biofumigation at diverging soil organic matter content, soil moisture content and soil temperature. In a third experiment (dose-response Petri dish bioassay), unburied seeds of eight species were subjected to various doses of rehydrated B. juncea powder. Biofumigation efficacy was determined by analysing viability of treated and untreated propagules. In general, efficacy of biofumigation increased with decreasing burial depth and increasing B. juncea dose. Biofumigation was highly effective (mortality >85%) against small-seeded species but less effective (mortality 0%-20%) against hard-seeded and large-seeded species at 200 t ha(-1). Vegetative propagules of Sonchus arvensis, Equisetum arvense and Convolvulus sepium were highly sensitive (mortality >90%) to biofumigation. Efficacy was most pronounced under moist warm incubation conditions, in the presence of a plastic ground cover
- âŠ