13,930 research outputs found

    Massive vector fields on the Schwarzschild spacetime: quasinormal modes and bound states

    Full text link
    We study the propagation of a massive vector or Proca field on the Schwarzschild spacetime. The field equations are reduced to a one-dimensional wave equation for the odd-parity part of the field and two coupled equations for the even-parity part of the field. We use numerical techniques based on solving (scalar or matrix-valued) three-term recurrence relations to compute the spectra of both quasi-normal modes and quasi-bound states, which have no massless analogue, complemented in the latter case by a forward-integration method. We study the radial equations analytically in both the near-horizon and far-field regions and use a matching procedure to compute the associated spectra in the small-mass limit. Finally, we comment on extending our results to the Kerr geometry and its phenomenological relevance for hidden photons arising e.g. in string theory compactifications.Comment: 15 pages, 8 figures; minor corrections, to be published in Phys. Rev.

    Star formation in the giant HII regions of M101

    Get PDF
    The molecular components of three giant HII regions (NGC 5461, NGC 5462, NGC 5471) in the galaxy M101 are investigated with new observations from the James Clerk Maxwell Telescope, the NRAO 12-meter, and the Owens Valley millimeter array. Of the three HII regions, only NGC 5461 had previously been detected in CO emission. We calculate preliminary values for the molecular mass of the GMCs in NGC 5461 by assuming a CO-to-H_2 factor (X factor) and then compare these values with the virial masses. We conclude that the data in this paper demonstrate for the first time that the value of X may decrease in regions with intense star formation. The molecular mass for the association of clouds in NGC 5461 is approximately 3x10^7 Mo and is accompanied by 1-2 times as much atomic mass. The observed CO emission in NGC 5461 is an order of magnitude stronger than in NGC 5462, while it was not possible to detect molecular gas toward NGC 5471 with the JCMT. An even larger ratio of atomic to molecular gas in NGC 5471 was observed, which might be attributed to efficient conversion of molecular to atomic gas. The masses of the individual clouds in NGC 5461, which are gravitationally bound, cover a range of (2-8) x 10^5 Mo, comparable with the masses of Galactic giant molecular clouds (GMCs). Higher star forming efficiencies, and not massive clouds, appear to be the prerequisite for the formation of the large number of stars whose radiation is required to produce the giant HII regions in M101.Comment: 32 pages, 5 figures, accepted for publication in the Astrophysical Journa

    Quantum Effects in Friedmann-Robertson-Walker Cosmologies

    Get PDF
    Electrodynamics for self-interacting scalar fields in spatially flat Friedmann-Robertson-Walker space-times is studied. The corresponding one-loop field equation for the expectation value of the complex scalar field in the conformal vacuum is derived. For exponentially expanding universes, the equations for the Bogoliubov coefficients describing the coupling of the scalar field to gravity are solved numerically. They yield a non-local correction to the Coleman-Weinberg effective potential which does not modify the pattern of minima found in static de Sitter space. Such a correction contains a dissipative term which, accounting for the decay of the classical configuration in scalar field quanta, may be relevant for the reheating stage. The physical meaning of the non-local term in the semiclassical field equation is investigated by evaluating this contribution for various background field configurations.Comment: 17 pages, plain TeX + 5 uuencoded figure
    corecore